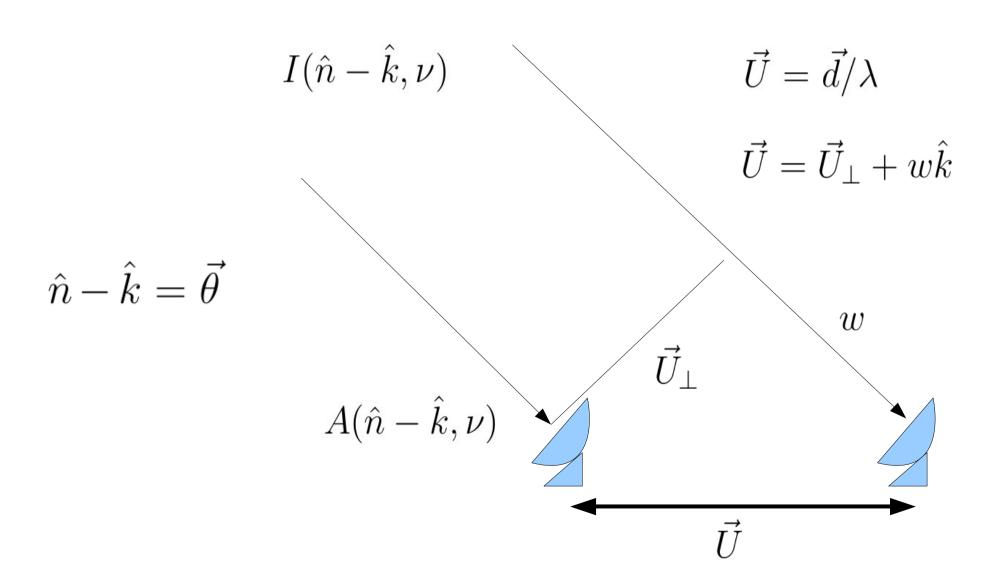


$$\mathcal{V}^{3D}(\vec{U},\nu) = \int d\Omega_{\hat{n}} e^{2\pi \vec{U} \cdot (\hat{n} - \hat{k})} A(\hat{n} - \hat{k}, \nu) I(\hat{n} - \hat{k}, \nu)$$



$$\mathcal{V}^{3D}(\vec{U},\nu) = \int d\Omega_{\hat{n}} e^{2\pi \vec{U} \cdot (\hat{n} - \hat{k})} A(\hat{n} - \hat{k}, \nu) I(\hat{n} - \hat{k}, \nu)$$

$$\mathcal{V}^{2D}(\vec{U}_{\perp},\nu) = \int d^2\vec{\theta} \, e^{2\pi i \vec{U}_{\perp} \cdot \vec{\theta}} \, A(\vec{\theta},\nu) \, I(\vec{\theta},\nu)$$

$$V_2^{3D}(\vec{U}_a, \vec{U}_b) = \langle \mathcal{V}^{3D}(\vec{U}_a) \, \mathcal{V}^{3D*}(\vec{U}_b) \rangle$$

$$V_2^{2D}(U_{\perp}) = \int d^2 \vec{U}_{\perp}' |\tilde{A}(\vec{U}_{\perp} - \vec{U}_{\perp}')|^2 P(U_{\perp}')$$

$$\alpha = -1.0$$

$$0.0001$$

$$P(U)$$

$$1e-08$$

$$P(U_{\perp}) = AU^{\alpha}$$

$$\alpha = -3.0$$

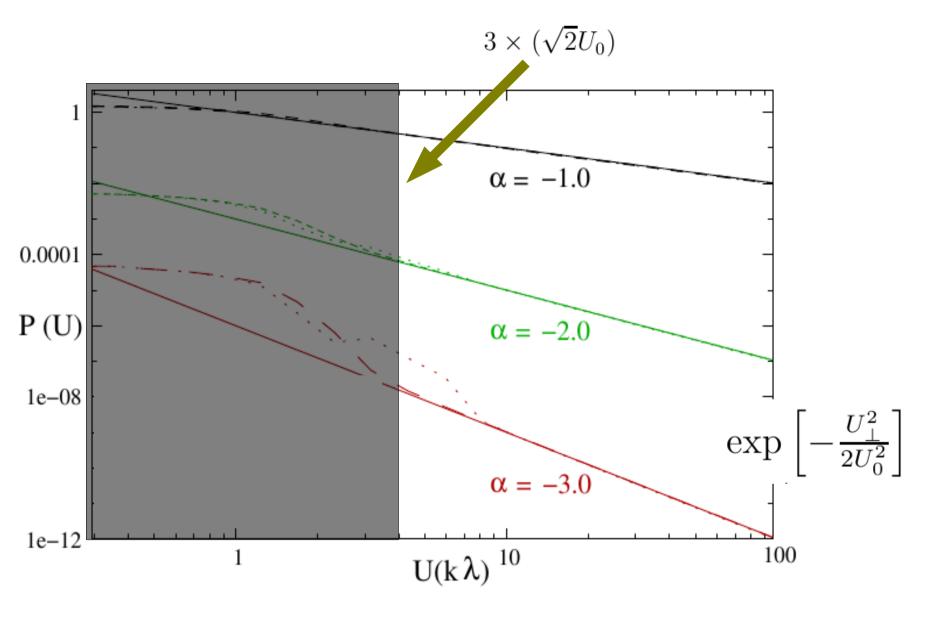
$$1e-12$$

$$1 \qquad U(k \lambda)^{10}$$

$$\alpha = -3.0$$

$$100$$

$$V_2^{2D}(U_{\perp}) = \int d^2 \vec{U}_{\perp}' |\tilde{A}(\vec{U}_{\perp} - \vec{U}_{\perp}')|^2 P(U_{\perp}')$$



$$V_2^{2D}(U_{\perp}) = \int d^2 \vec{U}_{\perp}' |\tilde{A}(\vec{U}_{\perp} - \vec{U}_{\perp}')|^2 P(U_{\perp}')$$

- General Wisdom: Smaller the frequency greater is the effect of the w-term.
- Usually when visibility correlation is done for the smaller frequency (150 MHz), correlation is done only for small w.
- Visibility correlation is used as an estimator of the power spectrum for the CMB observations.

Bharadwaj, S., Sethi, S. K., & Saini, T. D. 2009, PRD, 79, 083538

Bharadwaj, S., & Ali, S. S. 2005, MNRAS, 356, 1519

Hobson, M. P., & Maisinger, K. 2002, MNRAS, 334, 569

$$\mathcal{V}^{3D}(\vec{U},\nu) = \int d\Omega_{\hat{n}} e^{2\pi \vec{U} \cdot (\hat{n} - \hat{k})} A(\hat{n} - \hat{k}, \nu) I(\hat{n} - \hat{k}, \nu)$$

$$\mathcal{V}^{2D}(\vec{U}_{\perp},\nu) = \int d^2\vec{\theta} \, e^{2\pi i \vec{U}_{\perp} \cdot \vec{\theta}} \, A(\vec{\theta},\nu) \, I(\vec{\theta},\nu)$$

$$I(\vec{\theta}, \nu) = \bar{I}_{\nu} + \delta I(\vec{\theta}, \nu)$$

$$\mathcal{V}^{2D}(\vec{U}_{\perp}, \nu) = \tilde{A}(\vec{U}_{\perp}, \nu) \otimes \tilde{\delta I}(\vec{U}_{\perp}, \nu)$$

$$\mathcal{V}^{3D}(\vec{U},\nu) = \int d\Omega_{\hat{n}} e^{2\pi \vec{U} \cdot (\hat{n} - \hat{k})} A(\hat{n} - \hat{k}, \nu) I(\hat{n} - \hat{k}, \nu)$$

$$\mathcal{V}^{3D}(\vec{U},\nu) = \int d^2 \vec{U}_{\perp}' \, \tilde{\mathcal{A}}(\vec{U} - \vec{U}_{\perp}') \, \tilde{\delta I}(\vec{U}_{\perp}')$$

$$\mathcal{V}^{2D}(\vec{U}_{\perp}, \nu) = \tilde{A}(\vec{U}_{\perp}, \nu) \otimes \tilde{\delta I}(\vec{U}_{\perp}, \nu)$$

$$\mathcal{V}^{3D}(\vec{U},\nu) = \int d\Omega_{\hat{n}} e^{2\pi \vec{U} \cdot (\hat{n} - \hat{k})} A(\hat{n} - \hat{k}, \nu) I(\hat{n} - \hat{k}, \nu)$$

$$\mathcal{V}^{3D}(\vec{U},\nu) = \int d^2 \vec{U}_{\perp}' \, \tilde{\mathcal{A}}(\vec{U} - \vec{U}_{\perp}') \, \tilde{\delta} I(\vec{U}_{\perp}')$$
$$\tilde{\mathcal{A}}(\vec{U},\nu) = 4\pi \int d^2 \vec{U}_{\perp}' \, j_0(2\pi |\vec{U}_{\perp}' - \vec{U}|) \tilde{\mathcal{A}}(\vec{U}_{\perp}',\nu)$$

EFFECT OF w - term ON THE APERTURE FUNCTION

$$ec{U}_{\perp}$$
 w u $ilde{A}(ec{U}_{\perp},
u)$ $ext{GMRT}$ $ext{exp}\left[-rac{U_{\perp}^2}{2U_0^2}
ight]$

$$\mathcal{V}^{3D}(\vec{U},\nu) = \int d^2 \vec{U}_{\perp}' \, \tilde{\mathcal{A}}(\vec{U} - \vec{U}_{\perp}') \, \tilde{\delta I}(\vec{U}_{\perp}')$$

$$\tilde{\mathcal{A}}(\vec{U},\nu) = 4\pi \int d^2 \vec{U}'_{\perp} j_0(2\pi |\vec{U}'_{\perp} - \vec{U}|) \tilde{A}(\vec{U}'_{\perp},\nu)$$

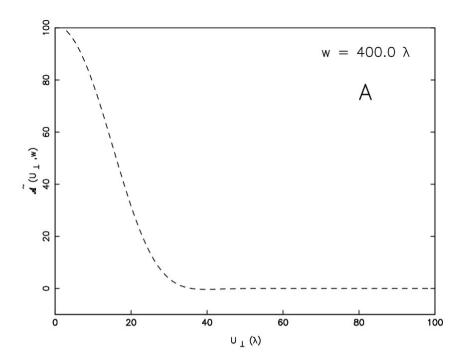


Figure 1. Modified aperture $\tilde{\mathcal{A}}(\vec{U}_{\perp}, w)$ plotted as a function of \vec{U}_{\perp} for two different values of w, (A) $w = 400.\lambda$ and (B) w = 12. $k\lambda$ at $\nu = 150$ MHz. Solid line in B shows the gaussian envelope.

$$\tilde{\mathcal{A}}(\vec{U},\nu) = 4\pi \int d^2 \vec{U}'_{\perp} j_0(2\pi |\vec{U}'_{\perp} - \vec{U}|) \tilde{A}(\vec{U}'_{\perp},\nu)$$

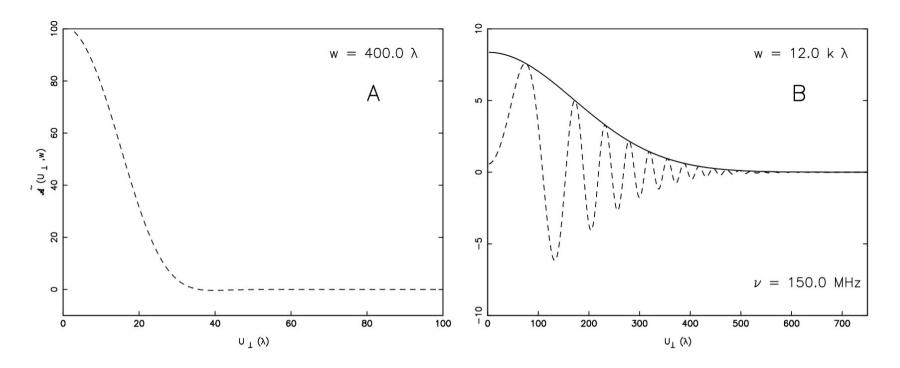


Figure 1. Modified aperture $\tilde{\mathcal{A}}(\vec{U}_{\perp}, w)$ plotted as a function of \vec{U}_{\perp} for two different values of w, (A) $w = 400.\lambda$ and (B) w = 12. $k\lambda$ at $\nu = 150$ MHz. Solid line in B shows the gaussian envelope.

$$\tilde{\mathcal{A}}(\vec{U},\nu) = 4\pi \int d^2 \vec{U}'_{\perp} j_0(2\pi |\vec{U}'_{\perp} - \vec{U}|) \tilde{A}(\vec{U}'_{\perp},\nu)$$

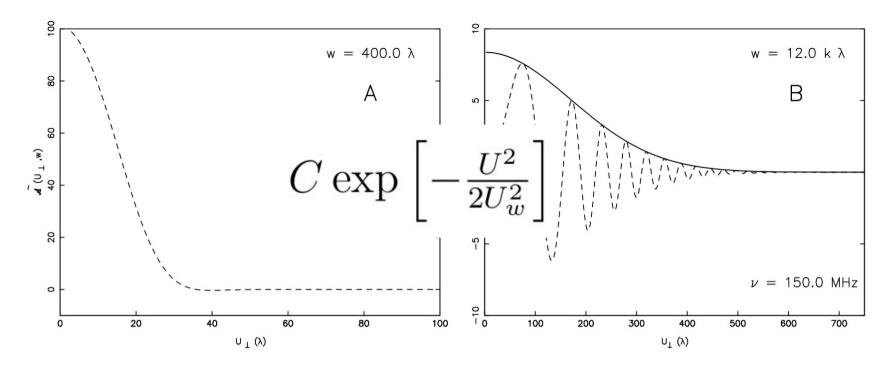
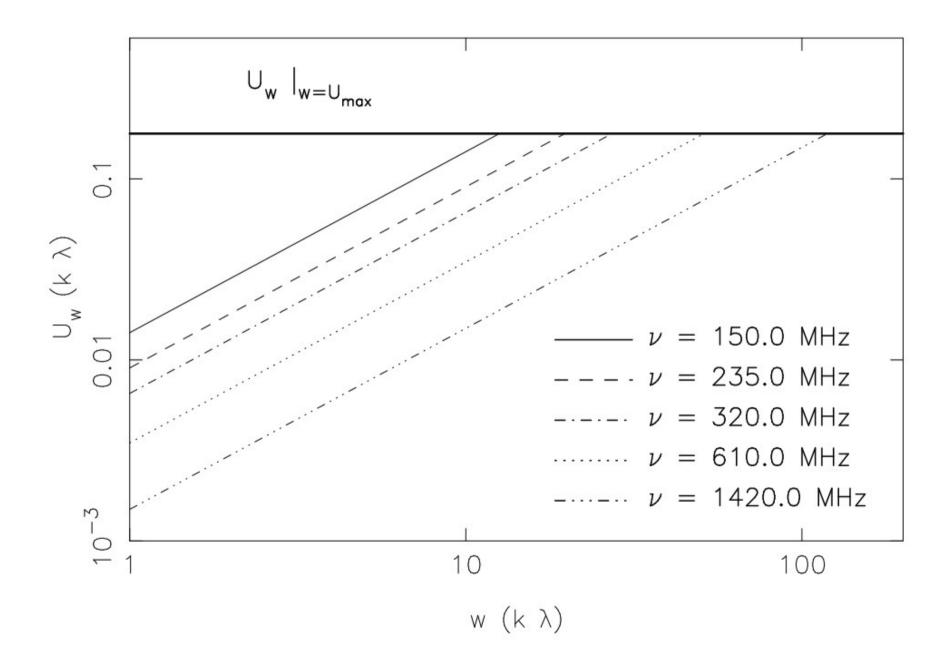


Figure 1. Modified aperture $\tilde{\mathcal{A}}(\vec{U}_{\perp}, w)$ plotted as a function of \vec{U}_{\perp} for two different values of w, (A) $w=400.\lambda$ and (B) w=12. $k\lambda$ at $\nu=150$ MHz. Solid line in B shows the gaussian envelope.

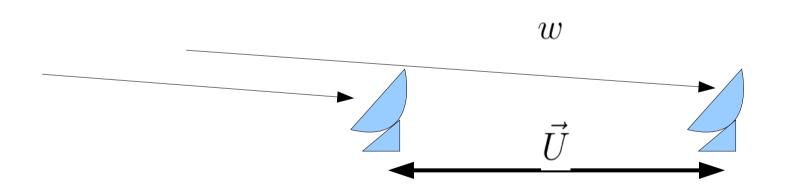
$$\tilde{\mathcal{A}}(\vec{U},\nu) = 4\pi \int d^2 \vec{U}'_{\perp} j_0(2\pi |\vec{U}'_{\perp} - \vec{U}|) \tilde{A}(\vec{U}'_{\perp},\nu)$$

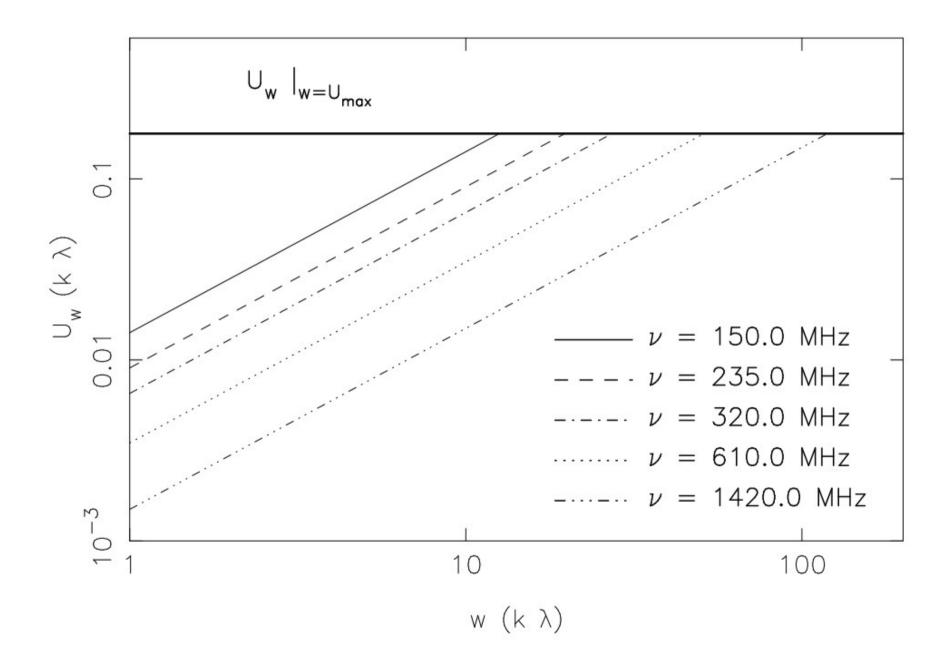


$$I(\hat{n} - \hat{k}, \nu)$$

$$\vec{U} = \vec{d}/\lambda$$

$$\vec{U} = \vec{U}_{\perp} + w\hat{k}$$





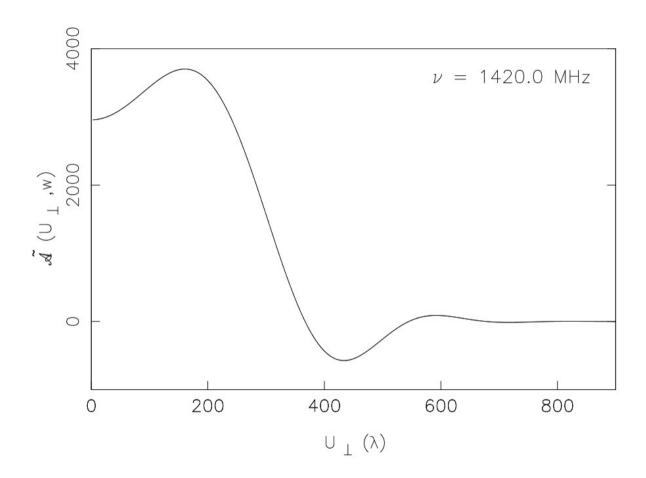


Figure 3. Modified aperture $\tilde{\mathcal{A}}(\vec{U}_{\perp},w)$ plotted as a function of \vec{U}_{\perp} for w=120. k λ at $\nu=1420$. MHz.

Empirical expression for $\bigcup_{\mathbf{w}} |_{\mathbf{w} = \bigcup_{\mathbf{max}}}$

$$\tilde{\mathcal{A}}(\vec{U},\nu) = 4\pi \int d^2 \vec{U}'_{\perp} j_0(2\pi |\vec{U}'_{\perp} - \vec{U}|) \tilde{A}(\vec{U}'_{\perp},\nu)$$

$$U_w\mid_{w=U_{max}}=rac{d_{max}}{\pi D}$$
 baseline separation Antenna

Maximum

diameter

Depends only on the array geometry, does not depend on frequency

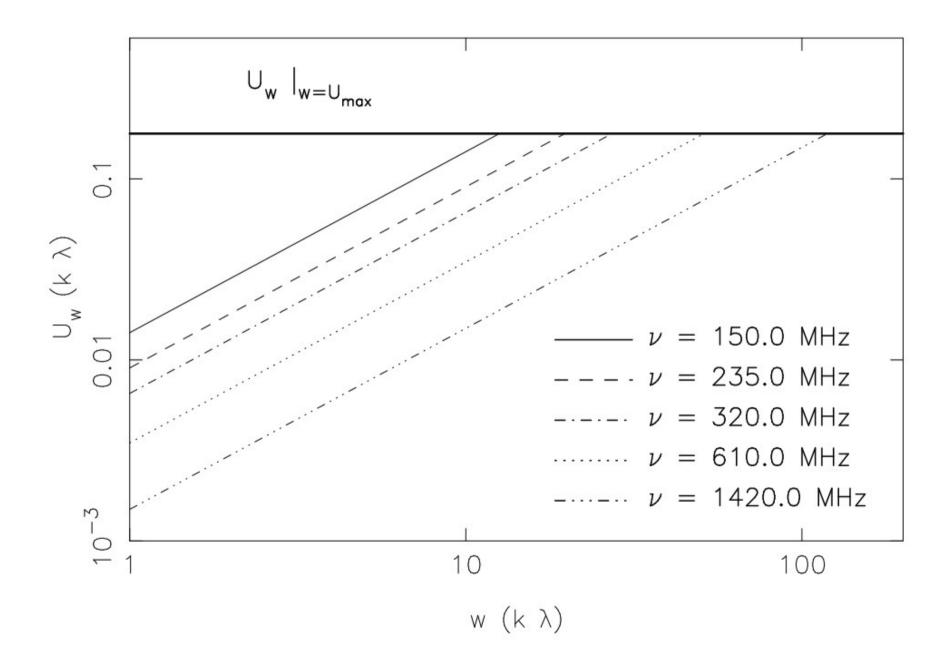
Empirical expression for $\bigcup_{\mathbf{w}} |_{\mathbf{w} = \bigcup_{\mathbf{max}}}$

$$\tilde{\mathcal{A}}(\vec{U},\nu) = 4\pi \int d^2\vec{U}_\perp' \ j_0(2\pi |\vec{U}_\perp' - \vec{U}|) \tilde{\mathcal{A}}(\vec{U}_\perp',\nu)$$

$$0.18 \text{k}\lambda \qquad \qquad \text{Maximum baseline separation}$$

$$U_w \mid_{w=U_{max}} = \frac{d_{max}}{\pi D} \qquad \qquad \text{Antenna diameter}$$

Depends only on the array geometry, does not depend on frequency

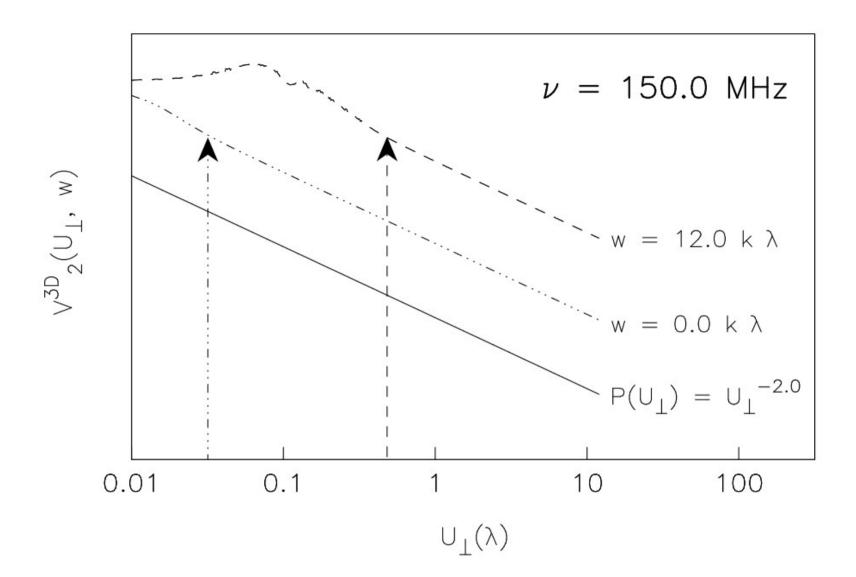


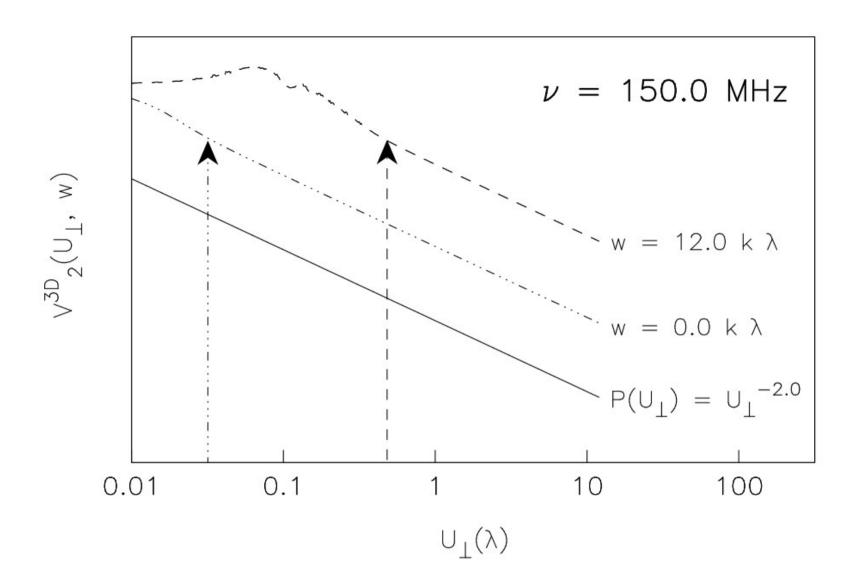
VISIBILITY CORRELATION AND POWER SPECTRUM ESTIMATION

$$V_2^{2D}(U_\perp) = \int d^2 \vec{U}_\perp' |\tilde{A}(\vec{U}_\perp - \vec{U}_\perp')|^2 P(U_\perp').$$

$$V_2^{3D}(U) = \int d^2 \vec{U}_{\perp}' |\tilde{\mathcal{A}}(\vec{U} - \vec{U}_{\perp}')|^2 P(U_{\perp}')$$

$$\tilde{\mathcal{A}}(\vec{U},\nu) = 4\pi \int d^2 \vec{U}'_{\perp} j_0(2\pi |\vec{U}'_{\perp} - \vec{U}|) \tilde{A}(\vec{U}'_{\perp},\nu)$$





$$\mathcal{E}(U_{\perp}) = \int_{0}^{U_{max}} dw \; \rho(w) \; V_{2}^{3D}(U_{\perp}, w),$$

Frequency	$U_w \mid_{w=U_{max}}$	U_{max}
(M Hz)	$(k \lambda)$	(k λ
150.	0.176	12.5
235.	0.176	19.6
320.	0.176	26.7
610.	0.176	50.8
1420.	0.176	118.3

150 MHz	GMRT	VLA A	VLA B	MWA	ASKAP
D (m)	45	25	25	6	12
d (km)	25	36	10	3	6
$U_w \mid_{w=U_{max}} (\mathbf{k} \lambda)$	0.18	0.46	0.13	0.16	0.16
U_{max} (k λ)	12.5	18	5	1.5	3.

