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Outline
• Intro and importance

• Observational constraints

• Evolution, sources, and 

spectrum

• HeII reionization
Springel & Hernquist (2003)



Intro and Importance
• Background of photons with energy sufficient to ionize HI (>13.6 

eV; UV and X-ray) that permeates the Universe

• Know it is there because otherwise the Lyα forest would be 
completely saturated (Gunn & Peterson 1965)

• Sets the ionization state of H, He, and metals

• Determines the thermal evolution of cosmic gas through 
photoheating: IGM and galaxy formation
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More Concretely...
• IGM:

➡ transmission of the Lyα forest

➡ temperature of the IGM

➡ its characteristic (Jeans) scale

➡ ionization corrections for metal 
enrichment studies

• Galaxy formation:

➡ modifies heating and cooling 
functions

➡ keeps gas out of shallow potential 
wells

Gnedin (2000)

Low-mass galaxies



Observational Techniques
• Proximity effect:

➡ look at Lyα forest near the quasar source vs. away from it

➡ measure the ratio 

➡ solve for          given the quasar luminosity

➡ systematics: quasar redshifts, quasar                                
variability, local overdensity
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CAFG et al. (2008a)

• Mean flux decrement:

➡ consider mean Lyα forest transmission 

➡ solve for           using

➡ also has systematics: T degeneracy, gas     
density PDF

➡ but more tractable: T measurement, simulations

Γbkg

HI
τ ∝ T−0.7/Γbkg

HI

Lidz, CAFG, et al., submitted

(but perhaps better at z≳5, see Calverley talk)



Lyα Opacity Measurement 

• 86 high-resolution, high S/N spectra 

obtained with Keck and Magellan

• Covers 2≤zLyα≤4.2

• Correct for continuum bias and 

metal absorption

CAFG et al. (2008b)

Keck/HIRES
Keck/ESI
Mag./MIKE



Integral Constraints on Jν
•         from  

•                    from                      

(Zheng et al. 2004, Bolton et al. 2006)

• HI must be reionized by z=6 (HI 

Lyα forest)

• HeII must be reionized by z~3 (HeII 

Lyα forest)

NHeII/NHIΓHeII/ΓHI

τeffΓHI

CAFG et al. (2008c,d)
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remarkably flat!



From Γ to Emissivity
• Only sources within an ionizing mean 

free path contribute to local ionizing 
background:
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λmfp

⇒ Γ ∝ ε912λmfpJ912 ≈
ε912λmfp

4π

• Mean free path determined by LLS:

λmfp ∝ (1 + z)−4

for dNLLS/dz ∝ (1 + z)1.5

⇒ Γ ∝ ε912(1 + z)−1

(Strengler-Larrea et al. 1995)

ε912 ≈ 〈nsrc〉〈L
src

912〉
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Ionizing Background Sources
• Given priors on the evolution of the 

QLF and SFH, and spectra, fit for the 
superposition quasars+stars that 
satisfies the IGM constraints

• Quasars: 

➡ Hopkins et al. (2007) luminosity 
function

➡ αQSO=1.6 (Telfer et al. 2003)

• Stars: 

➡ star formation tracing Hernquist & 
Springel (2003) model

➡ α*=1 at 1-4 Ryd, no emission beyond 
4 Ryd (Kewley et al. 2001)

CAFG et al. (2008c)
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stellar-dominated at z≳3, but with large (2/3) contribution 
from quasars at their z≈2 peak

In short:



Spectrum Calculation
• Solution to the radiative transfer equation:

�ν(z) = �QSO

ν (z) + ��
ν(z) + �recν (z)

• Emissivity is sum of quasars, stars, 
and recombinations:

• Absorption arises from intergalactic 
HI and HeII:

CAFG et al. (2009)
τν = NHIσHI(ν) + NHeIIσHeII(ν)

Jν0(z0) =
1
4π
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Spectral Features

• UV background spectrum is 

shaped by:

HI HeII

CAFG et al. (2009)

➡ source spectra
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Spectral Features

• UV background spectrum is 

shaped by:
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➡ source spectra

➡ photoelectric absorption 

edges

➡ spectral hardening above 

ionization edges

➡ recombination emission



Spectrum Results

CAFG et al. (2009)



Spectrum Results

CAFG et al. (2009)

Recombinations boost HI and 
HeII rates by ~10% at z=3

HeII ionizing background 
dominated by quasars

Total HI ionizing background 
comes from stars and quasars

Corresponding Rates



HeII Reionization
• Until now, neglected HeII reionization

• For an escape fraction of HeII ionizing 

photons ~1, the quasar luminosity function 

predicts that HeII is reionized by z~3

• Several, though not yet conclusive, 

observational lines of evidence:

➡ HeII Lyα forest

➡ HI Lyα forest temperature

➡ metal line ratios?

➡ HI Lyα forest mean transmission?

C=0, 1, 5, 10

CAFG et al. 2008c

Lidz, CAFG, et al., submitted

CAFG et al. (2008c)



HeII Reionization: Picture and Scales
• Before and during HeII reionization: 

extremely opaque large patches of 

HeII 

• Quasars are rare:

➡ mean quasar separation 

➡ HeIII bubble radii

➡ HeII ionizing mean free path

are of comparable size, 10-100 cMpc

• HeII ionizing background 

inhomogeneous, with large 

fluctuations

Ionized fraction

z=4.3

3.5

3.2

3

McQuinn et al. (2009, w/ CAFG)

HeII Reionization Simulation

130 cMpc/h



HeII Reionization: Spectral Effects
• Spectrum is hardened by residual HeII beyond 4 Ryd as it propagates 

away from the source quasar

• Almost completely suppressed just above HeII photoionization edge 
outside ionized regions (see also Madau & Haardt 2009 sawtooth):
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• Recovers as              and                    , resulting in a high-energy 
background

σHeII(ν)→ 0ν →∞

CAFG et al. (2009)



• Ionizations inject residual photon energy as heat 
into IGM
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CAFG et al. (2009)

• Temperature increase = mean energy per 
ionization distributed over all particles:

• Mean energy per ionization is determined 
by the quasar spectral index and maximum 
absorbed frequency:

z~3-4 HeII reion

HeII Reionization: Thermal Effects



• Can formalize and include time-dependence:

➡ use the quasar luminosity function to calculate the HeII ionization 
history, yIII(z)=ionized fraction(z)

➡ photoheating and adiabatic cooling dominate at z≲6

CAFG et al. (2009)
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HeII Reionization: Thermal Effects



• In reality, homogeneities lead to a temperature-density relation

• In the limit of early HI reionization,                          (Hui & Gnedin 1997)

• HeII reionization modifies the relation:

➡ injects heat at all Δ → flattens the relation, but not to isothermal

➡ introduces a large scatter from different reionization times

HeII Reionization: T-Δ Relation

T (∆) ≈ T0∆0.6

CAFG et al. (2009)

Analytic model based on
QLF and heating ~ exposure 
to high-energy background 

→ 

McQuinn et al. (2009, w/ CAFG)



Summary

• Ionizing Background Resources:

http://www.cfa.harvard.edu/~cgiguere/uvbkg.html

with data in electronic form, including GADGET TREECOOL file

• The cosmic ionizing background is fundamental to IGM and galaxy 
formation studies

• We have constrained its evolution and sources, and calculated its 
spectrum versus redshift:

➡ quasars and stars contribute about equally to the HI ionization 
rate at z=3, with stars dominating at z≳3 

➡ quasars are the dominant contributors to the HeII ionization 
rate

• HeII reionization induces fluctuations at >54.4 eV, heats the IGM, 
and modifies the temperature-density relation


