Simulations of H Reionization

Garrelt Mellema Department of Astronomy & Oskar Klein Centre

Collaborators: Martina Friedrich, Ilian Iliev, Paul Shapiro, Ue-Li Pen, Kyungjin Ahn, Yi Mao & the LOFAR EoR Key Project team.

Contents

- Ingredients for simulations
- Some results and observables
- Sizes of HII regions
- Topology
- Effects of small scale clumping
- Effects of suppression

Ingredients for Simulations

- For simulating cosmic H reionization we need the following three ingredients
 - Evolving intergalactic baryonic density field
 - Distribution of sources
 - UV luminosity of sources
- We need these ingredients in a large enough volume to capture scales relevant for reionization.
- Consensus: ≥ 100 h⁻¹Mpc. This is based on HII bubble sizes and cosmic variance considerations.
- Future 21cm observations will cover scales 0.5 1 h⁻¹Gpc

The IGM Density Field

- To derive the IGM density field, we use a cosmological dark matter simulation:
 - Code: cubep3m (Merz et al. 2005)
 - Cube of 114 h⁻¹Mpc=163 Mpc on each side
 - M_{particle}=5 10⁶ M_{\odot}
 - Mesh: 6144³, reduced to 256³ for radiative transfer.
 - Cosmology: WMAP5
- Use dark matter as a proxy for baryonic matter: on the largest scales (> Mpc) baryons should follow the DM.
- Option to include small scale structure through clumping factors (C=<n²>/<n>²).

Sources of Reionization

- At the fundamental level, we do not know the nature of the sources of reionization.
- Observed galaxy/QSO population at redshift 6 − 7 → sources connected to the collapsed DM halos at that epoch.
- Different halo types:
 - 1. $M < 10^8 M_{\odot}$: need H_2 to cool.

2. $10^8 < M < 10^9 M_{\odot}$: cool via H, growth affected by reionization.

- 3. M > 10⁹ M_{\odot} : cool via H, growth unaffected by reionization.
- Cubep3m simulation (M_{particle}=5 10⁶ M_☉) gives us *all* halos of type 2 and 3.
- Assumption: type 1 halos unimportant (H₂ is destroyed by Lyman-Werner radiation, hv < 13.6 eV), but see Ahn et al. (2009).

February 18, 2010

Negative Feedback on Sources

- Type 2 halos are affected by reionization: in ionized & heated region (T~10⁴ K) accretion of baryons is stopped/reduced.
- Also known as "Jeans mass filtering".
- Different studies show different results (Thoul & Weinberg 1996; Gnedin 2000; Okamota et al. 2008; Mesinger & Dijkstra 2008).
- Our source suppression model:
 - Type 2 halos (M<10 9 M $_{\odot}$) cease to be sources once inside an ionized region.
- This leads to "self-regulated reionization" as rapid reionization will result in many suppressed type 2 sources (Iliev et al. 2007).

Ionizing Photon Flux

We assume stellar populations as sources of EUV radiation.

Parameters:

- Initial Mass Function (IMF)
- Star formation rate (SFR)
- EUV escape efficiency (f_{esc})

Options (in general):

- Simple parametrization (L \propto f(M_{DM}), #photons per baryon).
- Galaxy evolution models (DM + hydro, semi-analytical models): GADGET, GALFORM.
- Imposed global SFH.

Simple Source Parametrization

Photon production:

- For a halo $N_{halo} \propto g M_{halo}$ in 10⁷ yr, with
- $g = f_{SF} x f_{esc} x N_{photon}.$
- N_{photon} EUV photons per baryon (IMF dependent):
 - Top-heavy/PopIII: N_{photon}=50,000
 - Top-heavy/PopII: N_{photon}=10,000
 - Salpeter: N_{Ph}=5,000
- So g=8.7 means for for Salpeter IMF and f_{esc} =5% that f_{SF} ≈3.5%.
- Spectrum: 50 kK Black body.
- Type 2 and 3 halos typically are given different values of g.
- (Note: old f parameter: $f \approx 2g$).

Radiative Transfer

- We solve for the evolution of the ionized hydrogen by tracing the EUV radiation from the sources through the evolving IGM density field.
- The code C²-Ray (Conservative Causal RAY-tracing) was developed for use inside hydrodynamic simulations, and is therefore extremely efficient when used on its own (Mellema et al. 2006).
- It uses short-characteristic ray-tracing on a regular grid.
- It deals with multiple sources.
- It can use both shared and distributed memory parallelization, scales well up to 10,000 cores.

Notation

Our simulations are characterized by

Suppression of type 2 sources

163Mpc_g8.7_130S_256

Density fields and halo sources from 163 Mpc cubep3m simulation

Efficiency of type 3 (high mass) sources

Efficiency of type 2 (low mass)

 $\frac{\text{RT mesh}}{256^3} =$

Reionization History

- Simulation: 163Mpc_g8.7_130S_256
- z(50%)=9.46
- z(99%)=8.45
- **τ**= 0.082

Photon Budget

Photon budget:

- ~2 photons per atom needed for reionization.
- Due to self-regulation, ~80% of those are provided by type 3 halos.
- The g=8.7 choice gives about 10 photons/baryon produced by z=6 (NB: not the same as UVB).

Growing HII Regions (2D)

- Movie of (slice of) density field and HII regions.
- Green: neutral
- Orange: ionized
- Blue dots: sources (stellar population).
- Note: high source density.
- Inside-out reionization.
- Complex morphologies.

Growing HII Regions (3D)

Movie produced with VAPOR software from NCAR

February 18, 2010

Cosmological Reionization (HRI, Allahabad)

The Redshifted 21cm Signal

The measured signal is the differential brightness temperature

$$\delta T_b \approx 28 \text{mK} \left(1+\delta\right) x_{HI} \frac{T_s - T_{CMB}}{T_s} \frac{\Omega_b h^2}{0.02} \left[\frac{0.24}{\Omega_m} \left(\frac{1+z}{10}\right)\right]^{\frac{1}{2}}$$

Depends on:

- x_{HI} : neutral fraction
- $-\delta$: overdensity
- T_s: spin temperature
- For $T_s \gg T_{CMB}$, the dependence on T_s drops out.
- The signal is *line* emission: carries spatial, temporal, and velocity information.

Growing HII Regions (2D)

- Movie of the time evolution ofot, in a slice through the simulation volume.
- Neutral regions are yellow, red and green.
- Ionized regions are black.
- Note: drop in δT_b due to zterm and small HII regions.
- Complex morphology.

Flying through Time and Space

- Movie of the LOS evolution of oT_b (flying through the 21cm image cube)
- Neutral regions are yellow, red and green.
- Ionized regions are black.
- Movie generated by using the periodicity of the volume, but rotating it to avoid passing through the same structures.

Statistical Measurements

- The sensitivity of the upcoming EoR experiments will be too low to image 21cm from reionization pixel by pixel: Statistical measurements needed.
- Luckily, the 21cm line signal is rich in properties:
 - <u>Global signals</u>: rms fluctuations.
 - <u>Angular</u> properties: power spectra
 - Frequency properties: Kaiser effect
 - <u>Non-Gaussianity</u>: skewness, PDFs

RMS Fluctuations & Resolution

- The simplest statistic measured by an interferometer is the 'global' rms of the 21cm signal.
- This signal shows a characteristic peak.
- At the resolution of the simulation this peak falls at <x_{HII}>~0.5.
- For the upcoming experiments, this peak may fall at higher <x_{HII}>!

"LOFAR" resolution: 3' and 440 MHz.

RMS Fluctuations & Resolution

- The simplest statistic measured by an interferometer is the 'global' rms of the 21cm signal.
- This signal shows a characteristic peak.
- At the resolution of the simulation this peak falls at <x_{HII}>~0.5.
- For the upcoming experiments, this peak may fall at higher <x_{HII}>!

"LOFAR" resolution: 3' and 440 MHz.

Power Spectra

- Information about the size scales can be obtained from the power spectra.
- Simulations show clear trends of shifting power to larger scales as reionization progresses, and a flattening of the power spectra.
- Note that the angular power spectrum is measured directly by an interferometer, the multipole I is equivalent to $\sqrt{(u^2+v^2)}$ in a visibility map.

Angular Power Spectra

163 Mpc volume

Characterizing the Sizes

- How to characterize the size of HII regions given the complex shapes?
- We are exploring a combination of methods (on x_{HII}):
 - Friends of Friends (Iliev et al. 2006)
 - Spherical average (Zahn et al. 2007)
 - Power spectra
 - 3V/A (Minkowski functionals V₀, V₁)
- Complex non-spherical geometry and non-gaussian pdfs, so all imperfect.
- We use $S_{SA} = 4R_{SA}$, $S_{PS} = 2.46/k$

Spherical Average

Sizes: SA versus PS

Friedrich et al. (2010)

Sizes: SA versus FoF

Friedrich et al. (2010)

Schmaltzing & Buchert (1997)

Topology

- Euler characteristic: number of objects + number of cavities number of tunnels. Equal to 1- genus.
- Minkowski functionals:
 - Volume V₀
 - Surface V₁
 - Curvature V₂
 - Euler characteristic V₃
- V₃ for Gaussian field:

See also Gleser et al. (2006) and Lee et al. (2008)

Euler Characteristic for Ionization Fraction

- Result depends on threshold value chosen for the local ionization fraction x_{HII} (due to resolution effects).
- At x_{HII}~0.5: Initially V3 follows that of a Gaussian field: inside out reionization!
- But: no second peak; reionization ends when ionization fronts move into the voids.

163Mpc_g8.7_130S_256 Friedrich et al. (2010)

Exploring Assumptions

The model presented by necessity has many assumptions.

- We will now briefly explore two aspects:
 - Effects of small scale density variations
 - Effects of source suppression
- Both are work in progress...

IGM Density Variations

- To test the effects of density variations below our spatial resolution, we apply a density and redshift dependent fit of the clumping C to every position.
- Fit derived from 29 Mpc simulation resolving 10⁵ M_☉ halos and scales ~300 pc.
- As reionization progresses DM clumping becomes an overestimate. Clumping and non-clumping cases bracket the possible behaviour.

Reionization Histories

 \mathbf{Z}

Size Scales

Comparison of evolution of PS (x_{HII}) : suppression of small scale HII regions due to recombinations (also seen in SA).

Power Spectra

Clumping

February 18, 2010

Different Source Populations

- Since we do not know how suppression works in reality, it is interesting to explore its effects on reionization.
- Also the effects of a higher mass cut off for our source population need exploration.
- Comparison in 53 Mpc volume:
 - Standard g8.7_130S [z(99%)=8.5, τ= 0.08]
 - Always suppression g10.4_0 (20% increase)
 - No suppression, weak sources g0.4_5.3 (20x weaker)
 - No suppression **g8.7_130** [z(99%)=12.9,τ= 0.13]

Ionization Maps at z(30%)

- Slices of the distribution of ionized fraction between these four show
- "No suppression/high eff" and "always suppression" similar.
- "No suppression/low eff" and "suppression" somewhat similar.

Sizes

PS for the "no suppression" and "always suppression" cases appear to be quite similar, at least for the larger scales.

Power Spectra (for x_{HII})

Topology

Conclusions

- Simulations can be used to gain better understanding of the complex process of reionization and the interpretation of the observations.
- Different size measurements address different aspects.
- The Euler characteristic provides a useful analysis tool for the topology of simulation results.
- The 21cm signal has a rich set of properties which should help in recognizing it in the data of upcoming EoR experiments.
- The later stages of the EoR show a peak in the 21cm rms fluctuations, but peak is not necessarily at 50% ionized.
- Small scale clumping can shift evolution by max Δz=1 and doubles number of photons needed; it suppresses small scale structure.

Thank You for Your Attention

