High Redshift Galaxies as Probes of Reionization

First z-dropout galaxy with a spectroscopic redshift of z=6.964 (**Ouchi et al. 2009b**)

Masami Ouchi (Carnegie)

What are Ly α Emitters (LAEs)?

- i) Strong Ly $\alpha \rightarrow \text{Very young}$ ($\leq 10\text{-}100\text{Myr}$) and dust/metal poor star-formation.
- ii) Faint continuum→high-z less-massive population with the avg. mass of M*~10⁸ Mo at z~3 (Gawiser+07, Parzkal+07, Nilsson+07, Lai+08, Ono+09)

 Typical LAEs are High-z young dwarf galaxies with SF

Lyα Emitters (LAEs) at z>6:

Probing neutral hydrogen fraction indicated by the absorption of Lya damping wing, using LAEs at z>6

At the neutral IGM universe, less Lya lines will be escaped and observed.

- ☐ How long reionization epoch extend?
- What are major sources of reionization?

EoR: Redshift >~6 (Fan+06; cf. Becker+07) Galaxies (blue dots) and ionized bubbles (orange) z~10-11: WMAP7+inst. model(Larson+10)

QSO spectra are completely damped at z>~6 (e.g. Becker's talk)

1. Subaru Surveys

Lyα Emitter (LAE) with log L(Lya)≥42.3 erg/s

- 356 z=3.1:
- z=3.7: 101
- z=4.9: 87
- z=5.7: 401
- z=6.6: 207
- z=7.0: 3

(Continuum color for Lya trough)

Spectroscopic Confirmation

Keck/DEIMOS

Thanks to the deep & wide field data, we have obtained 1,304 LAEs (216 spec. confirmed) at z=3.1-7.0

VLT/VIMOS

Lyα Emitter (LAE) with log L(Lya)≥42.3 erg/s

SDF SXDF

z=3.1: - 356(56)

z=3.7: - 101(39)

z=4.9: 87(5) -

□ z=5.7: 89(27) 401(93) □ z=6.6: 58(19) 207(28)

z=7.0: 2(1) 3

Magellan/IMACS

Numbers in () are the ones of spectroscopically identified objects

Fraction of contamination (foreground interloper) <~0.1

2. LAEs among High-z Galaxies

Lyα Emitters in high-z galaxy zoo (Comparison at z~3)

- LAE sample is the least massive one among z~3 galaxies (LBG, SMG, DRG, photo-z) with a relatively high sSFR by their selection
- However, stellar population of bright LAEs is similar to those of LBGs at M_{*}>10¹⁰Mo.

Average Stellar pop. of z~6-7 LAEs

- The past studies only estimate stellar pop. of the brightest LAEs with individual NIR detection→ exceptionally massive (~109-10¹0Mo) well-evolved pop. (~100 Myr; Chary+05,Lai+07)
- Large sample→ For the first time, typical LAE population by stacking (J~28 mag, IRAC1/2~26-27 mag; comparable to HUDF data)

Ono, Ouchi et al. in prep.

Average Stellar Pop. of z~6-7 LAEs

- Results of SED fitting for our z=6-7 LAEs
 - ☐ Stellar mass=3-9x10⁷Mo,
 - ☐ SFR~10 Mo/yr
 - \Box E(B-V)~0.0,
 - □ age=0.9-3 Myr (BC03+nebular emission and Z=0.2Zo)
 - cf. Bright LAEs with individual IR detections: massive (~109-1010Mo) well-evolved pop. (~100 Myr; Chary+05,Lai+07)
 - → very young and less massive SF galaxies.

l3. LAEs for Reionization&GF

a) Lya LF Evolution from z=5.7 to z=6.6: Signature of Reionization or Galaxy Evolution?

- Lya LF decreases from z=5.7 to 6.6 (SDF 0.2deg² survey;Kashikawa+06/+08).
 - □ Signature of IGM absorption? Based on L* evolution,
- But, explained by cosmic variance?? (cf. smaller data of Hu+06,Malhotra+04).
- On our 5x data in independent cosmic volumes show the decrease of LF from z=5.7-6.6 is found at >90% CL (Ouchi+ in prep.). Statistically, pure lum. dimming by 30% is more preferable. Signature of galaxy formation and/or reionization? Galaxy formation effect (10-30%, assuming UV LF evolution; Bouwens+08, Ouchi+09, Oesch+10). x_{HI} ≤0.2-0.3 (S04 model)

From the results of (a) LF and (b) clustering:

the Universe is *NOT* highly neutral at $z\sim7$ ($x_{HI}\lesssim0.3$).

Ouchi et al. in prep.

- At z=5 7: b=2 4±1 8 (Ouchi±05
- At z=5.7: b=3.4±1.8 (Ouchi+05).
 - □ We see no clear evolution of clustering from z=5.7
 →No signature of strong absorption by neutral IGM
 - □ x_{HI} ~0 and M(halo)=3e10 Mo(McQuinn+07); $x_{HI} \le 0.3$ (Furlanetto+06)
 - \rightarrow x_{HI} is consistent with the result of the Lya LF analysis

4. Search for z~7 z-dropouts complementing z~7 LAEs

Subaru z-dropout samples

1568 a shallo than F

z-drop

Foregro

□ Red fc Galact colors

- The first z-dropout with spec. redshift
- None of the candidates have z_spec of z<6.5.

Further UV LF decrease Jonizing Photon Budget Problem??

- Decrease of UV LF (>95%CL) from z=6 to 7 (see also, e.g., Oesch+10, McLure+10, Bunker+09) → at z=7, ρ_{UV}+Bolton07 model
 - The Universe could not be totally ionized by only galaxies??
 - Undetected faint population plays a major role? α<-1.9?</p>
 - Properties of galaxies are different from those at low-z having, e.g., a larger fesc(>~0.2), a lower metallicity, and/or a flatter IMF etc?

Indication of Ionized Bubble??

- z~7 z-dropouts appear strongly clustered.
 - □ Filamentary structure in SDF?
 - □ Lya emitting dropout sits at the center of overdense region of 4 UV brightest galaxies (~30Mpc). Why?
 - Reason?: The overdense region might make a wellestablished ionized bubble (>30Mpc) that allows Lya to escape from the galaxy in partially neutral Universe??

5. Near Future LAE studies with Subaru

Subaru Hyper Suprime-Cam (HSC: 2011-)

Subaru HSC Survey from 2011- (planned)

- Reionization and ionizing sources are constrained with num. density and distribution of 10 K LAEs at z~7 (100x larger than today's sample) in a total of 1Gpc x 1Gpc area (TBD).
- Constraining ionizing bubble topology and reionizing sources vs. neutral hydrogen distribution.

Summary

- High-z Lya emitters (LAEs) studied by our Subaru survey
 - □ LAEs among High-z Galaxies
 - •LAEs have less mass+higher sSFR than others by their selection. No significant difference between dropouts and LAEs at a given stellar mass/magnitude.
 - •No significant evolution of Ly α LF(z=3-6) \rightarrow Different evolutionary trend between dropouts (decreasing) and LAEs (const). Emergence of Ly α emitting population?
 - □ z>6 LAEs as probes of reionization and galaxy formation
 - •Decrease of Ly α LF from z=6 to 7
 - •No clear signature of clustering increase →Not highly neutral at z~7 (x_{HI} ≤ 0.3).
 - □ Relation between z~7 dropouts and z~7 LAEs
 - •First spec. comfirmed z-dropout
 - •fesc> \sim 0.2 would be required to explain Universe ionized by galaxies at z \sim 7.
 - •Distribution of LAE and dropouts is indicative of ionizing bubble??
 - □ Subaru Hyper-Suprime Cam survey (2011-)