The escape fraction from high-redshift dwarf galaxies

Jan-Pieter Paardekooper

Leiden Observatory

Inti Pelupessy Gabriel Altay Chael Kruip Vincent Icke Outline

Introduction

Modelling high-redshift dwarf galaxies

Results

Summary

Escape Fractions

Stars are believed to be the main source of ionising photons during reionisation

Contribution of stars depends on:

Star formation rate

Fraction of photons that escape the host galaxy

Escape fraction is a key input parameter in reionisation simulations

Observations of escape fractions:

Milky Way: ~6%

Local starbursts: < 3 - 10 %

Higher redshifts: increasing towards $\sim 10\%$

Direct measurements complicated

Compare flux at Lyman limit to frequency at which intrinsic luminosity is inferred

Need model description of star formation history

Numerical models

Modelling of escape fractions:

Dwarf starbursts: < 10% (Fujita et al. 2003)

Young galaxies at z ~ 3: 1 - 10 % (Razoumov & Sommer-Larsen 2006;2007) 1 - 3 % (Gnedin et al. 2008)

Dwarf galaxies at z ~ 8 - 10: 40 - ~90 % (Wise & Cen 2009) (Razoumov & Sommer-Larsen 2010)

Modelling of escape fractions from high-redshift dwarf galaxies:

Most of ionising radiation at z = 6-10 is predicted to come from dwarf galaxies

Our models use a code that accurately reproduces the properties of local dwarfs N-body/SPH code follows dark matter, gas and star particles Supernova and stellar wind feedback taken into account using pressure particles Model for 2-phase ISM similar to Wolfire et al. (2003) Metal cooling, UV-heating and cosmic ray ionisation Star formation according to Jeans mass criterion

Salpeter IMF

Models

Initial conditions

Dark halo with NFW profile

Baryon fraction: 0.041

Disk of stars and disk of gas

Isolated galaxy

Introduction Models

Results Summary

Models

Different models to do parameter study of

mass
$$M = 10^8 - 10^{10} M_{\odot}$$

spin parameter

$$\lambda = \frac{L|E|^{1/2}}{GM_{vir}^{5/2}} = 0.025 - 0.1$$

gas fraction

$$f_{gas} = 0.2 - 0.8$$

Radiative Transfer

Radiative transfer in post-processing

lonising radiation no effect on gas

Radiative transfer algorithms:

SPHRay (Altay, Croft & Pelupessy 2008)

Ray-tracer for SPH

SimpleX2 (Paardekooper, Kruip & Icke A&A submitted, arXiv:0912.4273)

Radiative transfer on unstructured grid

Radiative Transfer

SPHRay

Calculate escape fraction using most massive sources without dust

SimpleX

Study effects of:

Number of sources

Dust

Introduction Models Res

Results Summary

Radiative Transfer

Dust model similar to Gnedin et al. (2008)

Express dust cross section as effective cross section per hydrogen atom

Use fit to the observed extinction curves of SMC and LMC

Radiation primarily escapes through holes blown by supernovae

Density profile of individual galaxy

ху

XZ

yz

 $M = 10^9 M_{\odot}$ $\lambda = 0.05$

$$f_{gas} = 0.5$$

Introduction

Models Results

Summary

Results

Escape fraction of individual galaxy

Results

Average escape fraction for different spin parameters

Escape fractions are significantly lower than previously found for high-z dwarfs Comparable to what was found for young galaxies at $z\sim 3$ Possible causes are Initial conditions (disk vs. sphere) No external inflow of gas Supernova feedback Initial mass function (Salpeter vs. top-heavy) Coupling of radiation and gas

We find escape fractions from high-redshift dwarf galaxies < 10%

Radiation escapes through holes blown by supernovae

-----> Escape highly inhomogeneous

Spin parameter has not a big impact, initial gas fraction is more important

Escape fractions lower than previous work due to lower SFR and less SN feedback