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C. G. Scóccola CO line emission as a CMB foreground 1 / 10



CO line emission as a CMB foreground

Motivation

Motivation

� The same star-forming activity that causes reionization of the
IGM at z ∼ 10 leaves an imprint on the CMB by means of
several mechanisms, e.g.

∗ Thomson scattering on the ionized gas,

∗ resonant scattering on metals produced by the first stars,

∗ IR emission from dust particles that reprocess UV radiation,

� In this talk, I will refer to the impact that emission on
CO rotational lines have on the angular power spectrum of the CMB.
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CO line emission as a CMB foreground

Introduction

First stars:
production of C & O

⇒ CO molecules — rotational transitions
CO(J = 1→ 0) ν = 115.3 GHz

This line is very bright in:

∗ molecular clouds in our Galaxy (Wright et al. 1991; Fixsen et al. 1999)

∗ nearby star-forming galaxies (Weiss et al. 2005; Bayet et al. 2006; Baan et al. 2008)

∗ most distant quasars and radiogalaxies (Greve et al. 2005)

Lines emitted during the enhanced star formation epoch:

redshifted to CMB experiments frequency channels.

⇒ CO is a foreground of CMB: Contribution to the CMB power

spectrum by the emission in such lines in merging star-forming galaxies.
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Emission in CO

Idea: To compute the angular power spectrum of the foreground
fluctuations due to the emission in CO lines from merging
star-forming galaxies.

Main difficulty: Presence of the continuum emission of dust at
the same frequencies.

Proposal to separate the line contribution: To observe in
several spectral bands with resolutions in the range
∆ν
νobs

= 10−1 − 10−3.

With this varying spectral resolution technique:

I The CO line signal increases (by 1 order of magnitude).

I Other foregrounds (continuum emission) remain unchanged.
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CO line emission as a CMB foreground

Method

Theoretical estimation of CCO
` ’s:

Two main ingredients:

1. Model for the distribution of merging halos as a function of
SFR:

I Mass function:
I Press-Schechter,
I Sheth and Tormen,
I Jenkins et al. (2001) (fit to numerical simulations)

I Merger rate: Lacey and Cole formalism (Merging mass ratios:
(0.1-10)).

I Model for the star formation in each merging episode.

2. A relation (calibration) between the intensity of the line, and
the star formation rate of the object.
LCO line = RṀ ⇒ calibration using M82.
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CO line emission as a CMB foreground

C`’s due to emission by merging haloes

C`’s due to emission by merging haloes has two terms:

∗ a correlation term that follows the underlying distribution of
matter
∗ and a term that accounts for the Poisson fluctuations in the

number counts

These are calculated in the line of sight approach, and the
contributions come from ∆z (∆z

z ∼
∆νinstr
νobs

).
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C`’s for different spectral resolutions

Correlation and Poisson signals, for different
(

∆ν
νobs

)
’s.

∗ Poisson fluctuations con-
tribute down to much smaller
scales (typical source size)
and for them, further im-
provements on ∆ν/ν result in
a larger amount of measured
anisotropy.
∗ However, the actual am-
plitude of the Poisson term
strongly depends on the abil-
ity of the observing instru-
ments to isolate and remove
the bright individual sources.
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Dependence on the spectral resolution, for different `’s

Dependence of the amplitude of the correlation signal on
the spectral resolution.

∗ If sources are Poisson dis-
tributed, any improvement in
the spectral/angular resolu-
tion of the experiment, will
yield an increase in the mea-
sured power.

∗ However, sources are clus-
tered in regions of Lc ∼ 15−
25h−1 Mpc. The distribution
of these regions will introduce
more anisotropy, but only on
scales that are larger than Lc
(further improvement ⇒ no
diference).

∗ s̃i = αf( (∆ν)i
ν

) + C +Ni ∆r =
cH−1

0√
Ωm(1+z)3+ΩΛ

∆ν
νobs

C. G. Scóccola CO line emission as a CMB foreground 8 / 10



CO line emission as a CMB foreground

C`’s for different mass functions

C`’s for different mass functions:

I CST` ∼ 35% lower than CPS`

I CJK` ∼ 20% lower than CPS`
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Conclusions

Conclusions

I Effect of the emission in CO lines particularly strong in the
20− 60 GHz frequency range.

I Advantage: Each observing frequency probes a given redshift
shell (∆z/z ∼ ∆ν/νobs).

I The anisotropy will be optimally measured if both the angular
and the spectral resolutions are able to spatially resolve the
scales corresponding to the clustering.

I All the other foregrounds signals remain constant when
varying the spectral resolution ⇒ disentangle ⇒ Tomography
of reionization at different frequency bands.

I The emission on CO provides a new window into reionization,
complementing the low-frequency observations pursuing the
HI 21 cm fluctuations in the radio range.
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