

## Properties of galaxies in the reionization era: Galaxies at z>6



#### **Tom Theuns**

Institute for Computational Cosmology Ogden Centre for Fundamental Physics Durham University, UK and University of Antwerp Belgium



## Milan Raicevic





Simulation/theory side: how do we think these galaxies look like, and what are the expected Ly-C emissivities?

> Observational side: to what extent to the observed galaxies contribute to the build-up of the UV-background?

## Status of observations at z>6

### DISCOVERY OF $z \sim 8$ GALAXIES IN THE HUBBLE ULTRA DEEP FIELD FROM ULTRA-DEEP WFC3/IR OBSERVATIONS\*

R. J. BOUWENS<sup>1,2</sup>, G. D. ILLINGWORTH<sup>1</sup>, P. A. OESCH<sup>3</sup>, M. STIAVELLI<sup>4</sup>, P. VAN DOKKUM<sup>5</sup>, M. TRENTI<sup>6</sup>, D. MAGEE<sup>1</sup>, I. LABBÉ<sup>7,8</sup>, M. FRANX<sup>2</sup>, C. M. CAROLLO<sup>3</sup>, AND V. GONZALEZ<sup>1</sup>

#### The Contribution of High Redshift Galaxies to Cosmic Reionization: New Results from Deep WFC3 Imaging of the *Hubble* Ultra Deep Field

Andrew J. Bunker<sup>1</sup>, Stephen Wilkins<sup>1</sup>, Richard S. Ellis<sup>2</sup>, Daniel Stark<sup>3</sup>, Silvio Lorenzoni<sup>1</sup>, Kuenley Chiu<sup>2</sup>, Mark Lacy<sup>4</sup> Matt J. Jarvis<sup>5</sup> & Samantha Hickey<sup>5</sup>

> The star formation rate density is a factor of ~10 less than that at z=3-4, and is about half the value at z~6. While based on a single deep field, our results suggest that this star formation rate density would produce insufficient Lyman continuum photons to reionize the Universe unless the escape fraction of these photons is extremely high (f\_esc>0.5), and the clumping factor of the Universe is low. Even then, we need to invoke a large contribution from galaxies below our detection limit. The apparent shortfall in ionizing photons might be alleviated if stellar populations at high redshift are low metallicity or have a topheavy IMF.

Institute for Computational Cosmology 3





The observed ionization rate of the intergalactic medium and the ionizing emissivity at  $z \ge 5$ : Evidence for a photon starved and extended epoch of reionization

James S. Bolton<sup>1\*</sup> & Martin G. Haehnelt<sup>2</sup>  $\dagger$ 

Institute for Computational Cosmology 5

Theoretical expectations:



## **GIMIC/OWLS** project

Leiden: Claudio Dalla Vecchia Joop Schaye







## Crain, Robert

Trieste: Luca Tornatore

Aims: •simulate IGM and galaxies together •investigate numerical/physical uncertainties

•Gadget 3

7

- Star formation guarantees Schmidt law
- Stellar evolution
- •Galactic winds
- •Metal-dependent cooling

MPA: **Volker Springel** 



**Tom Theuns** 

ICC

Motivation: holistic approach to use simulations to study the formation of galaxies, and their surroundings

> Galaxies-Intergalactic Medium Interaction Calculation –I. Galaxy formation as a function of large-scale environment

> Robert A. Crain<sup>1,2\*</sup>, Tom Theuns<sup>1,3</sup>, Claudio Dalla Vecchia<sup>4</sup>, Vincent R. Eke<sup>1</sup>, Carlos S. Frenk<sup>1</sup>, Adrian Jenkins<sup>1</sup>, Scott T. Kay<sup>5</sup>, John A. Peacock<sup>6</sup> Frazer R. Pearce<sup>7</sup>, Joop Schaye<sup>4</sup>, Volker Springel<sup>8</sup>, Peter A. Thomas<sup>9</sup>, Simon D. M. White<sup>8</sup> & Robert P. C. Wiersma<sup>4</sup> (The Virgo Consortium)

The physics driving the cosmic star formation history

Joop Schaye,<sup>1\*</sup> Claudio Dalla Vecchia,<sup>1</sup> C. M. Booth,<sup>1</sup> Robert P. C. Wiersma,<sup>1</sup> Tom Theuns,<sup>2,3</sup> Marcel R. Haas,<sup>1</sup> Serena Bertone,<sup>4</sup> Alan R. Duffy,<sup>1,5</sup> I. G. McCarthy,<sup>6</sup> and Freeke van de Voort<sup>1</sup>





SFR follow Schmidt-law

## **Code in brief**

### Galactic winds



## Stellar evolution





 $10^{6}$ 

T (K)

 $10^{4}$ 

9

107

 $10^{8}$ 

## What about metal mixing?

#### Chemical enrichment in cosmological, SPH simulations 15



Figure 10. The enrichment sampling problem. A: A star particle enriches its neighbouring gas particles (red). B: The energy released by massive stars within the star particle drives its neighbours away. Because metals are stuck to particle the local metallicity in the shell fluctuates. C: Using kinetic feedback the problem is worse because only a small fraction of the neighbours are kicked.

## Chemical enrichment in cosmological, smoothed particle hydrodynamics simulations

Robert P. C. Wiersma,<sup>1\*</sup> Joop Schaye,<sup>1</sup> Tom Theuns,<sup>2,3</sup> Claudio Dalla Vecchia,<sup>1</sup> and Luca Tornatore<sup>4,5</sup>

Institute for Computational Cosmology 10



## Some of the Physics/Numerics variations in OWLS

| Simulation        | L025         | L100         | Section | Description                                                                                        |
|-------------------|--------------|--------------|---------|----------------------------------------------------------------------------------------------------|
| AGN               |              | $\checkmark$ | 4.10    | Includes AGN                                                                                       |
| DBLIMFCONTSFV1618 |              | $\checkmark$ | 4.7.2   | Top-heavy IMF at high pressure, cont. SF law, extra SN energy in wind velocity                     |
| DBLIMFV1618       |              |              | 4.7.2   | Top-heavy IMF at high pressure, extra SN energy in wind velocity                                   |
| DBLIMFCONTSFML14  |              |              | 4.7.2   | Top-heavy IMF at high pressure, cont. SF law, extra SN energy in mass loading                      |
| DBLIMFML14        |              |              | 4.7.2   | Top-heavy IMF at high pressure, extra SN energy in mass loading                                    |
| EOS1p0            |              |              | 4.4     | Slope of the effective EOS changed to $\gamma_{\rm eff} = 1$                                       |
| EOS1p67           |              | -            | 4.4     | Slope of the effective EOS changed to $\gamma_{\rm eff} = 5/3$                                     |
| IMFSALP           |              |              | 4.7.1   | Salpeter (1955) IMF                                                                                |
| IMFSALPML1        |              | -            | 4.7.1   | Salpeter (1955) IMF; wind mass loading $\eta = 2/1.65$                                             |
| MILL              |              | $\checkmark$ | 4.1     | Millennium simulation cosmology, $\eta = 4$ (twice the SN energy of <i>REF</i> )                   |
| NOAGB_NOSNIa      | -            |              | 4.6     | No mass loss from AGB stars and SNIa                                                               |
| NOHeHEAT          |              | -            | 4.3     | No extra heat input around helium reionization                                                     |
| NOREION           |              | -            | 4.3     | No hydrogen reionization                                                                           |
| NOSN              |              |              | 4.8     | No SN energy feedback from SNe                                                                     |
| NOSN_NOZCOOL      |              |              | 4.2     | No SN energy feedback from SNe and cooling assumes primordial abundances                           |
| NOZCOOL           |              |              | 4.2     | Cooling assumes primordial abundances                                                              |
| REF               |              |              | 3       | Reference model                                                                                    |
| REIONZ06          |              | -            | 4.3     | Hydrogen reionization occurs at $z = 6$                                                            |
| REIONZ12          |              | -            | 4.3     | Hydrogen reionization occurs at $z = 12$                                                           |
| SFAMPLx3          |              | -            | 4.5.2   | Normalization of Kennicutt-Schmidt SF law increased by a factor of 3                               |
| SFAMPLx6          |              | -            | 4.5.2   | Normalization of Kennicutt-Schmidt SF law increased by a factor of 6                               |
| SFSLOPE1p75       |              | -            | 4.5.2   | Slope of Kennicutt-Schmidt SF law increased to 1.75                                                |
| SFTHRESZ          |              | -            | 4.5.1   | Critical density for onset of SF is a function of metallicity (Eq. 4)                              |
| SNIaGAUSS         | -            | $\checkmark$ | 4.6     | Gaussian SNIa delay function                                                                       |
| WDENS             |              |              | 4.8.1   | Wind mass loading and velocity depend on gas density (SN energy as $REF$ )                         |
| WHYDRODEC         |              | -            | 4.8.2   | Wind particles are temporarily hydrodynamically decoupled                                          |
| WML1V848          |              | $\checkmark$ | 4.8.1   | Wind mass loading $\eta = 1$ , velocity $v_{\rm w} = 848  \rm km/s$ (SN energy as <i>REF</i> )     |
| WML4              |              | $\checkmark$ | 4.8     | Wind mass loading $\eta = 4$ (twice the SN energy of <i>REF</i> )                                  |
| WML4V424          | $\checkmark$ | -            | 4.8.1   | Wind mass loading $\eta = 4$ ; wind velocity $v_{\rm w} = 424 \rm km/s$ (SN energy as <i>REF</i> ) |
| WML8V300          |              | -            | 4.8.1   | Wind mass loading $\eta = 8$ ; wind velocity $v_w = 300 \text{ km/s}$ (SN energy as <i>REF</i> )   |
| WPOT              | $\checkmark$ | $\checkmark$ | 4.9     | Wind mass loading and vel. vary with grav. potential ("Momentum-driven")                           |
| WPOTNOKICK        |              | $\checkmark$ | 4.9     | Same as $WPOT$ except that no extra velocity kick is given to winds                                |
| WTHERMAL          |              | -            | 4.8.3   | SN energy injected thermally                                                                       |
| WVCIRC            | $\checkmark$ | $\checkmark$ | 4.9     | Wind mass loading and vel. vary with halo circ. vel. ("Momentum-driven")                           |

#### Dwarf galaxy with GIMIC/OWLS code

log (Gas density) in [Msun/h / (Mpc/h) ^ 3]

z = 29.888 L = 0.999 Mpc/h



20





## Star formation rate density (Madau/Lilly)









### Crain et al





Reference model at different resolutions, (low versus high), compared to Hopkins+ data

Institute for Computational Cosmology 19



#### Institute for Computational Cosmology 20



# Reionization as function of environment



## A spatially resolved map of the kinematics, star formation and stellar mass assembly in a star-forming galaxy at z = 4.9

A. M. Swinbank,<sup>1★</sup> T. M. Webb,<sup>2</sup> J. Richard,<sup>1</sup> R. G. Bower,<sup>1</sup> R. S. Ellis,<sup>3</sup>
G. Illingworth,<sup>4</sup> T. Jones,<sup>3</sup> M. Kriek,<sup>5</sup> I. Smail,<sup>1</sup> D. P. Stark<sup>6</sup> and P. van Dokkum<sup>7</sup>



ICC





# Many "parameters" uncertain: would like to explore parameter space:

## Simulating cosmic reionization: combine GalForm with Simplex



## Milan Raicevic

Tom Theuns



Institute for Computational Cosmology

## Galaxy formation model Galform





Emissivity in two popular GalForm flavours

Institute for Computational Cosmology 27





Emissivity as function of halo mass

Institute for Computational Cosmology 29



#### Massloss of galaxies due to a UV-background

Takashi Okamoto<sup>1\*</sup>, Liang Gao<sup>1,2</sup> and Tom Theuns<sup>1,3</sup>

<sup>1</sup>Institute for Computational Cosmology, Department of Physics, Durham University, South Road, Durham, DI <sup>2</sup>National Astronomical Observatories, Chinese Academy of Science, Beijing, 100012, China <sup>3</sup>Department of Physics, University of Antwerp, Campus Groenenborger, Groenenborgerlaan 171, B-2020 Antv



## The SNe feedback shapes the faint-end slope alpha of the luminosity function



#### Hierarchical galaxy formation

Shaun Cole,<sup>1\*</sup> Cedric G. Lacey,<sup>1,2,3\*</sup> Carlton M. Baugh<sup>1\*</sup> and Carlos S. Frenk<sup>1\*</sup>



Dependence on star formation model

## Sub-mm counts require top-heavy bursty mergers bursts no bursts



Can the faint submillimetre galaxies be explained in the  $\Lambda$  cold dark matter model?

C. M. Baugh,<sup>1\*</sup> C. G. Lacey,<sup>1</sup> C. S. Frenk,<sup>1</sup> G. L. Granato,<sup>2</sup> L. Silva,<sup>3</sup> A. Bressan,<sup>2</sup> A. J. Benson<sup>4</sup> and S. Cole<sup>1</sup>

Institute for Computational Cosmology 33

## UV-luminosity functions: Default Baugh compared to Bouwens



#### Institute for Computational Cosmology 34

## UV-luminosity functions: Default Baugh compared to Bouwens



Institute for Computational Cosmology 35

## Galaxy colours compared to Bouwens



## Luminosity function shapes



## SimpleX





#### Triangulating Radiation: Radiative Transfer on Unstructured Grids

J. Ritzerveld<sup>1\*</sup>, V. Icke<sup>1</sup> and E.-J. Rijkhorst<sup>1</sup>

Institute for Computational Cosmology 38

## Radius of cosmological HII region



Tom Theuns

ICC



**Cosmological Radiative Transfer Codes Comparison Project I: The Static Density Field Tests** 

Ilian T. Iliev<sup>1\*</sup>, Benedetta Ciardi<sup>2</sup>, Marcelo A. Alvarez<sup>3</sup>, Antonella Maselli<sup>2</sup>, Andrea Ferrara<sup>4</sup>, Nickolay Y. Gnedin<sup>5,6</sup>, Garrelt Mellema<sup>7,8</sup>, Taishi Nakamoto<sup>9</sup>, Michael L. Norman<sup>10</sup>, Alexei O. Razoumov<sup>11</sup>, Erik-Jan Rijkhorst<sup>8</sup>, Jelle Ritzerveld<sup>8</sup>, Paul R. Shapiro<sup>3</sup>, Hajime Susa<sup>12</sup>, Masayuki Umemura<sup>9</sup>, Daniel J. Whalen<sup>10,13</sup>

Institute for Computational Cosmology 40

## RT with millions of sources



Institute for Computational Cosmology 41

| Simulation | $L_{box}$ | $N_{DM}$   | $m_{DM}$          |
|------------|-----------|------------|-------------------|
|            | [Mpc/h]   |            | $[10^5M_\odot/h]$ |
| L12.5N128  | 12.5      | $128^{3}$  | 646.2             |
| L20N512    | 20        | $512^{3}$  | 41.35             |
| L10N512    | 10        | $512^{3}$  | 5.17              |
| L10N1024   | 10        | $1024^{3}$ | 0.65              |
| L20N1024   | 20        | $1024^{3}$ | 5.17              |

## Set of N-body runs varying box size and numerical resolution to investigate numerical convergence



#### The halo mass function from the dark ages through the present day

Darren S. Reed,<sup>1\*</sup> Richard Bower,<sup>1</sup> Carlos S. Frenk,<sup>1</sup> Adrian Jenkins<sup>1</sup> and Tom Theuns<sup>1,2</sup>



Institute for Computational Cosmology 43

# The effect of resolution on ionisation fraction with/without a "local" clumping factor



ICC



## Effect of recombinations in haloes on reionisation



ICC

## MF of "neutral" haloes



Institute for Computational Cosmology 47

## When is halo first "ionized?



### When is halo first "ionized?





# Which galaxies produce the ionizing photons? Halo masses.



Institute for Computational Cosmology 50



# Which galaxies produce the ionizing photons? SFRs.



Institute for Computational Cosmology 52

## Bursts cause large dispersion in luminosity as function of halo mass



Institute for Computational Cosmology 53



## **Lighting the Universe with Filaments**

#### Sci 317, 2007

Liang Gao<sup>1</sup>\* and Tom Theuns<sup>1,2</sup>



Institute for Computational Cosmology 55

## Conclusions

Full hydro-sims provide reasonable number of ionising photons
caveat: faint-end slope too steep at low-z

GalForm gives galaxies z>6 with observed colours and luminosities; currently detected galaxies contribute little to ionisation rate
most ionising photons produced in small galaxies, with top-heavy IMF during a burst

•escape fractions of 0.1-1 give reasonable reionisation redshift

•source suppression in GalForm has only small effect on reionisation redshift

•combined Simplex + GalForm can generate model in a few days on a desk-top computer, with full statistics on galaxy population at all z.

Thank you!