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Abstract

The Naturalness Principle as a requirement that the heavy mass scales decouple from the physics
of light mass scales is reviewed. In quantum field theories containing elementary scalar fields, such
as the Standard Model of electro-weak interactions containing the Higgs particle, mass of the scalar
field is not a natural parameter as it receives large radiative corrections. How supersymmetry solves
this Naturalness Problem is outlined. There are also other contexts where presence of elementary
scalar fields generically spoils the high-low mass scales decoupling in the quantum theory. As an
example of this, the non-decoupling of possible Planck scale violation of Lorentz invariance due
to quantum gravity effects from the physics at low scales in theories with elementary scalar fields
such as the Higgs field is described. Here again supersymmetry provides a mechanism for ensuring

that the decoupling of heavy-light mass scales 1s maintained.
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I. INTRODUCTION

Till recently, all elementary particles that were known to exist in Nature were only spin
half fermions and spin one gauge particles. With the discovery of the Higgs particle at the
LHC in 2012, we now have the first elementary spin zero particle. An elementary scalar
field, such as the Higgs field, introduces a completely new feature in quantum field theories
containing such a field. This new feature is a generic non-decoupling of the heavy mass
scales from the physics of low mass scales.

A quantum field theoretic description for physical processes with a characteristic smaller
mass scale my, should not depend sensitively on the physics of larger mass scales my. This
decoupling requirement is a reasonable expectation so that whatever low mass scale quan-
tum theory we have can describe the physics at that scale reliably. Only possible allowed
dependence of the physics at low mass scale m; on the higher mass scale my is in the form
of its inverse powers and at the worst, a milder dependence through logarithms of the high
scale, but, as shall be discussed in detail in the following, those with positive powers of this
scale are not acceptable at all. Another name for this requirement is Naturalness Principle.

A quantum field theory containing enly spin half fermions and gauge fields exhibits pre-
cisely this decoupling. Such theories are called natural theories and the masses and the gauge
couplings are natural parameters. Examples of such theories are: Quantum Electrodynamics
(QED) and Quantum Chromodynamics (QCD).

The notion of Naturalness emerged in the late 1970°s from the work of Wilson, Gildener
and Weinberg, and 't Hooft [1, 2]. A concise formulation is provided by 't Hooft’s Doctrine of
Naturalness [2]: A parameter a(p) at any energy scale 1 in the description of physical reality
can be small, if and only if, there is an enhanced symmetry in the limit o(p) — 0. This
implies a rule of thumb: quantum corrections to the parameter v (masses and couplings)
should be proportional to a positive power of that parameter itself:  (A@)guantum ~ @™, n >
1. This would be ensured by the associated approximate symmetry. Further this property
implies that the enhanced symmetry holds even at the quantum level as o — 0.

Let us look at QED in some detail. The theory describes the interaction of fermions A of

charge gy such as an electron with electromagnetic radiation through a Lagrangian density:
£ = lFf‘“F A i (8, — deq A A
QED = T} s T [3 Y ( (M=l ;4.) = me] (1)

Various parameters here, the electromagnetic coupling e and electron mass m,, can be



naturally small. Limit m, — 0 leads to an enhanced symmetry, the chiral symmetry:
separate conservation of the number of left and right handed electrons. It is for this reason
that one loop correction to the electron mass in this theory is given by logarithmically

divergent diagrams and is proportional to the electron mass itself.

(Am,) ~ e m, InA (2)

1 loop
In the limit m, — 0, this correction disappears reflecting the fact that chiral symmetry
is preserved by such perturbative quantum corrections in this limit. Also, e — 0 results
in enhanced symmetry: there is no interaction and hence particle number of each type is
conserved. Again, quantum corrections to the coupling e are logarithmically divergent and

are, in the lowest order, proportional to e*:
(Ae)l loop ~ 63 In A (3)

It is this reason that atomic physics described by the interactions of electrons and photons
is not disturbed by the fact there are other heavier charged fermions such as the muon,
tau-lepton, top quarks and others in Nature: m,, ~ 200 m,, m, ~ 3500 m,, ..... Moy ™
3.4 x 10" m,. Effects of heavier fermions are decoupled from the physics of electrons and
photons; showing up at best through logarithmic dependence on them.

As against this, theories with elementary scalar fields have completely different behaviour.
Elementary scalar fields spoil heavy-light decoupling: quantum field theories with scalar
fields are not natural. For an example, consider a Yukawa theory of an elementary scalar

field ¢ of low mass m,, coupled to a heavy fermion A of mass m:
1 1 g . = g
L= 50 0,0—5mid”+A(iv" 0 —my) A+ yAro ; my 3> my (4)

In this theory, the light scalar mass m is not a natural parameter. Smallness of m; can
not be protected by any approximate symmetry against perturbative quantum corrections
involving heavy fermions in the loops. In fact, such corrections to m% appear with quadratic

divergences:

k% L oamd ;
Al ~ / ks~ vmhIn (/) (5)

k? —mg;)?
where we have used dimensional regularization and minimal subtraction in the last step.
Notice that this correction is proportional to m3 and not to m2. Therefore, there is no
decoupling of the heavy mass scale from the light mass scale theory. Even in the limit

my — 0, this correction does not go away.



II. NATURALNESS OF ELECTRO-WEAK THEORY

Standard Model (SM) of particle physics has an elementary scalar particle, the Higgs
particle. Discussion above then implies that its mass is not protected by any symmetry
against large radiative corrections.

Tree level masses for the Higgs particle, gauge particles W+, Z° and the fermions in SM
are given by: myy. .o = Vv, my = guv/2, mz = gv/(2cosfw), m; = Yju/V2,
where v is the vacuum expectation value of the scalar field, A is quartic scalar coupling, g
is gauge coupling, Y} is Yukawa coupling of the fermions f to the scalar field and f is the
weak mixing angle.

Notice, the limit v — 0 does enhance classical symmetry: (i) all particles being massless
in this limit, we have scale invariance of the classical theory; (ii) the weak gauge bosons
are massless resulting in restored SU(2) gauge symmetry; and additionally (iii) there is
chiral symmetry due to zero masses of the fermions. Yet, v is not a natural parameter;,
consequently, masses of the Higgs particle, weak gauge bosons and fermions are not natural.
This is so, because of the Coleman-Weinberg mechanism of radiative breaking of symmetry:
quantum fluctuations generate a non-zero quantum vacuum expectation value for the scalar
field even when classically v is zero, breaking all these symmetries. There is no enhancement
of symmetry at the gquantum level in the limit where classical vacuum expectation value
v — 0.

In the SM, one-loop radiative corrections to the Higgs mass come from the diagrams of

the type where fermions f, gauge fields (W, Z) and Higgs field H go around the loop:
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These diagrams contribute to the Higgs mass a correction as:
2 _ 2
AmHigys = aA
with

o AX+ Bg® — CY})

= Tom2
where A, B, C are numerical constants respectively associated with the diagrams with scalar
fields, gauge fields and the fermions in the loops. Use dimensional regularization (with
minimal subtraction) to write this correction as:

A 2 1 AA 2 1 m?{i!}gs B 2 9 1 'rf'],g(),ug(: CY2 21 ’)’]'L?
MHiggs ™ m Miggs 11 U—z T s 1 —ME = jmyin —M—z

Largest mass particle (top quark) in the loops gives the dominant correction:
5 : 2
Arn’xz'ﬁggs &= - Tn’fop ln("rn’tzop/y’ ) (6)

Thus, the radiative correction to scalar mass is generically controlled by the highest mass
in the loops. This is to be contrasted with QED where correction to the square of the
electron mass is proportional not to the square of any other mass but only to square of the
electron mass itself: Am? ~ a m?2.

Now from Eqn.(6), for top mass my,, = 175 GeV, and the coupling factor o ~ 1/100,
the radiative contribution Amg, . is still small for Miriges = 125 GeV. But if there were a
much heavier particle in Nature, such as in a Grand Unified Theory (Corltairlirlg the QCD

and the electro-weak model), the radiative corrections to Higgs mass would be controlled by

this heavy scale and hence very large.

Naturalness breakdown scale of the SM: As we have seen above, one-loop correction
to Higgs boson mass due to quantum fluctuations of a size characterized by the scale A may
be written as:  Am?, ags = @ A% Square of the vacuum expectation value of the scalar
field, and also the masses of vector bosons W* and Z° and fermions would obtain similar
corrections. For coupling & ~ (100)7! and Mygiges ~ 100 GeV, if we require that these
radiative corrections to this mass do not exceed its value, A'rrﬁ”gﬁs ~ mf“ggs, we have:

Aﬂl‘?ﬁ‘ggs e (100 GGV)z
o (100)-1
This leads to an estimate of the naturalness breakdown scale for the electro-weak theory as:

AN A 1 TeV

A2 =

= (1000 GeV)?* = (1 TeV)? (7)



III. LARGE LOGARITHMICALLY DIVERGENT CORRECTIONS IN GUTS

Not only are the quadratically divergent graphs with heavy mass fields going around the
loops responsible for destabilizing the lower mass scale, there are also some log divergent
graphs which contribute to this phenomenon [5]. These graphs appear generically in any
Grand Unified Theory (GUT) of the QCD and electro-weak SU(2) x U(1) model.

Consider a gauge theory based on a gauge group GG which is spontaneously broken at two

stages:
& & g L g F>f

This is achieved through vacuum expectation values of two scalar fields: ()0 = F' ~ M,
and (@Yyee = f ~ M,. It was in this context of GUTs that the Naturalness Problem was
noticed in its earliest versions by Gildener and Weinberg [1] who realized that the relative
stability of the smaller scale f as against the larger scale /' can not be maintained under
radiative quantum effects and this was given the name: Gauge Hierarchy Problem.
Quadratically divergent graphs for the two-point correlations of light scalar fields give
large corrections (~ %) to its M2 (~ f?). Besides these, there are also large logarithmically
divergent contributions from the graphs involving large (~ F) three-point coupling [5].

These come from the mixed light-heavy field interaction terms of the type:

Lipi~ kD% =k (H + F)? (Hy+ f)* ~ o + o HAH Ad B 4 s :

c~f, d~F (8)
The relevant three-point vertex is from the interaction term dH, HZ with coupling strength
proportional to the heavy mass scale, d ~ F. This leads to the following logarithmically

divergent two-point graph with light fields H, on the external lines and one heavy (/) and

one light (H,) fields propagating on the internal lines in the loop:

Large log divergent graph



This diagram contributes a correction to the light mass square, M2 given by:
AM; ~ F? In(F?/p?) (9)

which is proportional to the square of the larger mass scale due the presence factor F2
coming from the two interaction vertices. This results in a destabilization of the light-heavy

mass hierarchy.

IVv. A WINDOW TO PHYSICS BEYOND SM: SUPERSYMMETRY

In a Grand Unified Theory, perturbative quantum corrections tend to draw the smaller
electro-weak scale (Mpy, ~ 100 GeV) towards the GUT scale (Mgyp ~ 10'% GeV). Even
without grand unification, now with the established non-zero masses for neutrinos, though
very small, as indicated by the neutrino oscillations, the see-saw mechanism for these masses
also suggests a new physical high scale of the order of 10! GeV or so linked to the mass of
the right-handed neutrino. This would imply that the radiative corrections would drag the
Higgs mass to such high values. Even if we ignore both these sources of possible high mass
scales, there is yet another high physical mass scale, Mp, = 10'° GeV in Nature, associated
with quantum gravity. Radiative corrections would draw the masses of electro-weak theory
to this high scale and hence their natural values would be ~ 10'® GeV and not the physical
values characterized by the low SM scale! All this suggests that there has to be some new
physics beyond 1 TeV such that the SM with its characteristic scale of 100 GeV stays natural
beyond this scale.

There are several proposed solutions to the Naturalness Problem: (for a review see [3]).
Of these, with Higgs mass at 126 GeV/, supersymmetry is the most promising.

An elementary property of quantum field theory which gives an extra minus sign for the
radiative diagram with a fermionic as against a boson field going around in the loop allows
for the possibility that naturalness violating effects due to bosonic and fermionic quantum
fluctuations can be arranged to cancel against each other. For this to happen the various
couplings and masses of bosons and fermions have to be related to each other in a highly
restrictive manner. Further, for such a cancellation to hold at every order of perturbation, a
symmetry between bosons and fermions would be imperative. This is what supersymmetry

does indeed provide.



A historical note: Supersymmetric solution of the Naturalness Problem (or non-
decoupling Problem or Gauge Hierarchy Problem) was discovered in 1981 in Bangalore,
requiring supersymmetry to become operative at about 1 TeV for the masses of Standard
Model to be stable against radiative corrections:

(i) In reference [4], the quadratic divergences were shown to be absent in a supersymmetric
theory with spontaneously broken anomaly free U(1) gauge symmetry.

(i) In [5], absence of the Naturalness spoiling quadratic divergences as well as the large
logarithmic divergences was shown in a supersymmetric theory with two distinctly different
scales, heavy F' and light f, associated with sequential gauge symmetry breaking through
vacuum expectation values of two sets of scalar fields. This demonstrated that the hierarchy
f?/F? < 1 is radiatively maintained even when quantum corrections are included in a
supersymmetric framework.

(iii) In reference [6], it was demonstrated that (a) in a supersymmetric theory with
anomalous U(1) gauge invariance (where the U(1) charges do not add up to zero, Q) #
0), quadratic divergences are not absent; but in a theory which is anomaly free (3 Quay =
0), these are absent; and (b) in a supersymmetric theory with anomaly free SU(2) x U(1)
gauge invariance, quadratic divergences due to the boson and fermion fields in the loops
cancel out completely with no net quadratic divergences and hence such a theory is perfectly
Natural.

(iv) In reference [7], Technicolour and supersymmetric solutions of the Naturalness Prob-
lem of SM are reviewed.

(v) It was argued in [8] that, in a general GUT with two distinct mass scales, the de-
coupling of the high mass scale from the low mass scale is spoiled by the same features
of elementary scalar fields as are responsible for the Coleman-Weinberg radiative symme-
try breaking. In a supersymmetric theory, Coleman-Weinberg mechanism is not operative
and hence, the low-high mass scale distinction holds even when quantum corrections are
incorporated.

(vi) In supersymmetric theories with spontancous broken U(1l) gauge symimetry even
when trace of U(1) charges is zero, the D term can get one loop corrections, but that these

are only logarithmically divergent was proved in reference [9].



V. SUPERSYMMETRIC EXTENSION OF THE STANDARD MODEL

Supersymmetric theories with non-Abelian gauge invariances are always free of quadratic
divergences. On the other hand, those with U(1) gauge invariance have quadratically diver-
gent radiative corrections proportional to the sum of U(1) charges of all the fields. If the
U(1) charges sum to zero, quadratic divergences are absent even in these theories. Super-
symmetrized Standard Model is one such theory.

For theories with two widely separated scales such as a supersymmetric GUT, the large
logarithmic divergences are also separately absent.

In supersymmetric theories with spontaneously broken gauge symmetries through non-
zero vacuum expectation value (VEV) of elementary scalar fields, the limit VEV — 0 does
lead to an enhanced symmetry even at the quantum level, (provided, in presence of a U(1)
gauge symmetry, all the U(1) charges add up to zero). Coleman-Weinberg mechanism does
not produce radiative breaking of the gauge symmetry in such theories.

Supersymmetry requires that bosons and fermions come in families. For supersymmet-
ric model building see references [10]. Simplest supersymmetric model is the Minimal-
Supersymmetric-Standard-Model (MSSM) where every SM particle has a superpartner with
opposite statistics: for the photon we have a Majorana fermion, the photino, as its super-
symmetric partner; for the leptons we have scalar sleptons; for the quarks scalar squarks;
etc.

Exact supersymmetry requires that all properties, except the spin, of particles in a super-
multiplet are the same: masses are equal and so are the couplings; electroweak and colour
quantum numbers are identical. But, supersymmetry can not be an exact symmetry of Na-
ture: otherwise we should have already seen a scalar super partner of an electron with the
same mass and charge. So supersymmetry has to be broken in a way that the super partners
are much heavier than the SM particles. Yet naturalness violating effects should not appear:
in particular the quadratic divergences should not reappear in the radiative corrections. This
indeed happens if supersymmetry is spontaneously broken or explicitly broken by so called
soft-terms (7.e., broken by masses only and not by dimensionless couplings) in the action at
a scale Mgy,qy ~ 1TeV.

MSSM has a whole variety of possible new interactions: a large number of new free

parameters (~ 100) with all possible soft supersymmetry breaking terms. This makes it



difficult to make any robust and easily verifiable predictions. An important requirement
in supersymmetric theories is the suppression of unwanted flavour changing neutral current
(FCNC) which are otherwise generically present in large sizes in such theories. Sometimes,
people make certain assumptions about the nature of the new interactions which reduces
the number of the extra parameters. Different possible choices of these parameters lead
to predictions with different possible masses and also different decay patterns. One such
model, the constrained Minimal Supersymmetric Model (¢cMSSM), has only a few extra free
parameters, five in all.

So far no evidence for supersymmetry has emerged from the 8 TeV data collected at
LHC. This may change over time when more data becomes available. But, it is perfectly
possible that the simplest form of supersymmetric Model, i.e., cMSSM is not the right
picture. More involved supersymmetric models may have to be explored. A MSSM with
more parameters, or a next-to-minimal Supersymmetric Standard-Model (NMSSM) ([11],
[6]) or even a non-minimal model with more structure may be required. A recent example
of a more involved model is the gauge mediated supersymmetry breaking (GMSB) with
an unconventional messenger content [12] as against the 5 and 5 multiplets of the grand
unification gauge group SU(5) in the minimal conventional GMSB model.

It is important to realize that, except for the compelling naturalness argument which
predicts supersymmetry as operative at about 1000 GeV, so far there are really not enough
strong theoretical or experimental constraints available to guide us to a reliable supersym-
metric model. Besides, the properties of the Standard Model including the fact that Higgs
mass is now known to be around 126 GeV, other important and stringent restrictions for su-
persymmetry model building come from the requirement of sufficient suppression of flavour
changing neutral currents (FCNCs) which otherwise can tend to be generically large in the
supersymmetric theories. Hopefully, more experimental results from the LHC will provide

enough discriminating guidance that will finally result in the correct supersymmetric model.

VI. OTHER NON-DECOUPLING PROBLEMS: LORENTZ NON-INVARIANCE

There can be many other physical situations where presence of elementary scalar fields
can cause the same non-decoupling problems. These again would be cured by supersymme-

try. We shall now discuss such an example which concerns possible Lorentz non-invariance

10



generated by quantum gravity effects at the Planck scale.

Large quantum fluctuations in the gravitational field would introduce granularity of space
at extremely short distances (~ €p,,,., = 107 e¢m). This would imply a minimum spatial
length beyond which no physical process can take us. This is in tension with Lorentz
invariance. This is so because Lorentz invariance implies that we can make an arbitrary
large boost transformation which would result in Lorentz contraction of lengths to arbitrary
small values. This violation of Lorentz invariance would reflect itself through a change of the
dispersion relation for a particle. These feature are known to emerge in theories of quantum
gravity such as the Loop Quantum Gravity (LQG) as well as the String Theory [13].

Do these Planck scale effects decouple from low energy physics? In a quantum field theory
of fermions and gauge fields only where low-high mass scales decoupling holds, this would
indeed be realized. But, as discussed by Collins et al [14], theories containing elementary
scalar fields would not exhibit such a property. We now present their argument for this
behaviour in the following.

Lorentz invariance implies a unique form of the dispersion relation for a particle: E? —

7 —m? = 0, in units where velocity of light ¢ = 1. A Lorentz non-invariance effect would

change the dispersion relation to: E* —p? —m? —II(E, p) = 0, where II represents the result
of all the self energy graphs with a possible small Lorentz violating contribution from the
quantum gravity effects.
We may parametrize the Lorentz violation through a dimensionless parameter [14]:
a o a d
& = lim [(——— 4 ——) H(p)} (10)
p—0 | \ Op, Ip, a|p] 9|p]

For exact Lorentz invariance II(p) would be a function of the Lorentz invariant combination
pi —p? implying that £ is zero. Thus € # 0 would provide a measure of violation of Lorentz
invariance.

Now as an example, consider a Yukawa theory of a fermion and a scalar field with their
small masses given by the low scale m, . Let us study the contribution to £ for the scalar
field from the correction to the scalar two-point function II(pg, p) due to a fermion loop in
this theory:

i 2/ d*k k(k+p) +mi,
Y e (R —mi, +ie) [(p+ k)2 —mi, + i

_ d*k 1 1 Ame. —ip?
= — 2y + : T e e PR T
(2m)4 | K2 —mi, +ie (k+p)2+md  +ie k2 —m7  + i€
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where y is the Yukawa coupling. This integral has a quadratic divergence which gets con-
verted to a logarithmic divergence in € due to the momentum derivatives in its definition

above:

'k k24 LR 4m?
é-: “16’“/2f 0 . 3 _— 1+ : méiow :
(2m)t (k2 —mi,, + ie)® k? —mi , + e

This integral can be evaluated by Euclidean continuation of k, to imaginary values tk,:

A 2 ‘ (d4k)E k% = %!;2 — 477?’152911)
e=100 [ o oy |1 -

We may use a ultraviolet cut off A for the Euclidean internal loop momentum k = /k*k, =
\/ k3 + k2 which is invariant under four dimensional Euclidean rotations. It is straight
forward to check that such a calculation yields the Lorentz symmetric answer £ = 0.
However due to the possible Lorentz violations from the Planck scale physics, the free
fermion propagator used in this calculation would get significantly modified at high scales.
The momentum cut-off would have to be Lorentz violating introducing different cut-offs
for the k, and |k| integrations. One way to introduce this order one non-invariance is by
introducing a Lorentz non-invariant cut-off by multiplying the free fermion propagator by
a smooth function f(|k|/A) which for the momenta much below the Planck-scale cut-off
A (~ Mp;) goes to 1, f(0) = 1, so that the low energy propagator stays largely unaffected,
and for high momenta this function goes to zero, f(oc) = 0, to tame the ultraviolet behaviour
in a Lorentz non-invariant manner. This would lead to a one-loop contribution to the two-

point scalar function as:

a1, & lk+1 L& Lval g 5
H(p)—Ziyzf(dk f(i)f(f\) (A)) ( ) (1+;ML)

2m)t | k2 —mi, +ie ( + € —mj,, + te

low

. 5 -1
A simple example of such a cut-off function is f(|k|/A) = (1 + (k?/AQ)) . Such a regulator

yields a large Lorentz violation at low energies as can be seen by evaluating £ from this T1(p)

12



after Euclidean continuation of k; to ik,:

B 16y2/(d4k)g f (@)f(%) {1_ 4ml,, Kk‘%l’?)
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N syz Cde (J@)f (@) + 2 @) (@) + O(WEU)
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= y2 > I 2 TFLQOw
- & [ ot + oS -

where prime denotes derivative with respect to the argument. Note that the leading effect
is independent of the Planck-scale cut-off A (~ Mp,). That is, there is no m3,, /M3, factor
in the leading term and we have only a coupling constant suppression. Hence there is no
decoupling of the Planck scale effects from light mass scale! This result implies a low energy
violation of Lorentz invariance of a size which is very large compared to the measured limits
on such non-invariance.

It is important to emphasize that this non-decoupling behaviour again emerges from those
parts of the radiative corrections in the two-point scalar correlation which, without the cut-
off, are quadratically divergent.

The amount of non-invariance of Lorentz symmetry at low energies depends on the exact
cut-off function f(z). Clearly, if we replace f(z) = 1 in the above expression for &, we
obtain, as expected, the Lorentz symmetric answer & = 0.

We emphasize again that in theories with only gauge fields and fermions and no ele-
mentary scalar fields, where there are no quadratic divergences, this order one quantum
gravity induced Lorentz violation at the Planck scale would radiatively percolate down to
low energies in a highly suppressed form, with only order (m3,, /M3%,) effects.

Obviously, in theories with elementary scalar fields, supersymmetry again provides a

protection mechanism against the above discussed large radiative transmission of Lorentz
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violation from Planck scale to low scales: there are no quadratic divergences in the scalar self-
energy graphs in supersymmetric theories. In the supersymmetrized version of field theory
example discussed above, exact supersymmetry will completely cancel out the quadrati-
cally divergent contributions in the two-point scalar correlator from graphs with bosonic
fields going around the loops with those with fermionic fields going around the loops.
Consequently, Planck scale violations of Lorentz invariance will leave behind in & only a
highly suppressed low energy effect [15] of a size O(mj,,,/M3,). But as supersymmetry is
softly broken at low energies below a scale Mg ¢y in Nature, the Bose-Fermi cancellation
will not be exact, but will happen up to: ¢ ~ y* (M2yey/M3)In(M3,/Méysy). In
the Standard Model, radiative stability of the Higgs mass requires: Mg gy ~ 10% Gel/.
Though approximate supersymmetry provides a suppression, yet this discussion implies a
profound result that quantum gravity effects predict a tiny violation of Lorentz invariance
at low energy scales given by: & ~ 32 (Myey/M2,) ~ (100)71 (103/101)% ~ 10734,
Non-zero value of £ modifies the Lorentz symmetry respecting dispersion relation Ily(p) =
—p? + m?c? = —(E?*/c?) + p* + m?c® = 0 by change of velocity of light ¢ by an amount
given by: Ac/c = £/4 + O(£?). The estimate of violation of Lorentz invariance here may
be contrasted with the present day observational/experimental limits on this violation as
represented by the varying velocity of light as: Ac/c < 10722, The violation of Lorentz
invariance suggested above is significantly smaller, by some 12 orders magnitude, than this

limit.

VII. CONCLUSION

Quantum field theories with elementary scalar fields do not exhibit low-high energy de-
coupling behaviour: such theories are not Natural. The various low mass parameters are
not stable under quantum radiative corrections which tend to drag them to the highest mass
scale.

The Naturalness Problem of the SM has proven to be an ideational fountain-head for a
whole variety of new Beyond-Standard-Model (BSM) ideas over last several decades. Super-
symmetry is the most promising of these. Now is the time to confront these with experiments
at LHC. Surely, experimental search for supersymmetry and related phenomenological de-

velopments are the present day frontier of high energy physics.
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Hopefully, experimental discovery of supersymmetry, though very likely not in the sim-
plest version as represented by the ¢cMSSM, but as in a more general MSSM framework, or
even perhaps in a non-minimal form, may happen in near future.

Besides the naturalness issues related to the masses in the Standard Model, there are other
places where similar problems arise. For example, generic non-decoupling of the (possible)
Planck scale violation of Lorentz invariance due to quantum gravity effects in theories with
elementary scalar fields has the same origin. Supersymmetry again can ensure decoupling
of this Planck scale violation from the low energy physics. This implies a suppressed low
energy violation of Lorentz invariance as reflected by a variable velocity of light of a size
£~ 4 (Acfc) ~y* (M2,gy/ME) ~ 107 for a supersymmetry breaking scale of Msysy ~
10° GeV (which is required by the radiative stability of the 100 GeV scale of electro-weak
theory).
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