Parton Distributions : A simple-minded Introduction

Lecture 1

Sangam-2015@HRI

Debajyoti Choudhury

Department of Physics & Astrophysics, University of Delhi

February 17, 2016

Prehistory : Naive Parton Model

- $e\mu \rightarrow e\mu \text{ vs } eP \rightarrow eP$: Proton is not point-particle \implies Introduction of Electric and Magnetic Form factors.
- Inelastic eP scattering : Structure factors $W_i(\nu, Q^2)$ Q : momentum transfer ; ν : energy transfer to electron
- Deep Inelastic scattering : $W_i(\nu,Q^2) \rightarrow F_{1,2}(x) \qquad x \equiv 2M_P \nu/Q^2$
 - Proton as a collection of quasi-free partons, each with a momentum fraction x.
 - Partons massless (at the scale of the scattering problem)
 - Callan-Gross relation \implies Most partons are spin-half objects
 - Sum rules \implies Non-charged partons carry nearly half the momentum.
- Theoretical development : Asymptotic Freedom in non-abelian theories.
 - Charged partons identified as quarks.
 - Neutral partons identified as gluons.
- Experimental development : $e^+e^- \rightarrow 3$ jets
 - Existence of Gluons.
 - Gluons are spin-1.
 - -SU(3)

Then, why do we talk of $u(x, Q^2)$?

Prehistory : Naive Parton Model

• Rutherford scattering :

spin-0 non-relativistic particle on heavy target (no recoil)

$$\left(\frac{d\sigma}{d\Omega}\right)_{\text{Ruth.}} = \frac{\alpha^2 Z^2}{4 E^4 \sin^4(\theta/2)}$$

• Mott scattering :

spin-0 relativistic particle on heavy target (with recoil)

$$\left(\frac{d\sigma}{d\Omega}\right)_{\text{Mott.}} = \left(\frac{d\sigma}{d\Omega}\right)_{\text{Ruth.}} \frac{E'}{E} \cos^2(\theta/2)$$

• $e\mu \rightarrow e\mu$

$$\left(\frac{d\sigma}{d\Omega}\right)_{e\mu} = \left(\frac{d\sigma}{d\Omega}\right)_{\text{Ruth.}} \frac{E'}{E} \left[\cos^2\frac{\theta}{2} - \frac{q^2}{2M^2}\sin^2\frac{\theta}{2}\right] = \left(\frac{d\sigma}{d\Omega}\right)_{\text{Mott}} \left[1 - \frac{q^2}{2M^2}\tan^2\frac{\theta}{2}\right]$$

• Rosenbluth scatt $(eP \to eP)$: Proton is not point-particle \implies Introduction of Electric and Magnetic Form factors. $\left(\frac{d\sigma}{d\Omega}\right)_{\text{Rosen}} = \left(\frac{d\sigma}{d\Omega}\right)_{\text{Mott}} \left[\left\{F_1^2 - \frac{q^2 F_2^2}{4M^2}\right\} - \frac{q^2}{2M^2}(F_1 + F_2)^2 \tan^2 \frac{\theta}{2}\right]$

 $F_i = F_i(q^2)$

• Inelastic eP scattering : Structure factors $W_i(\nu, Q^2)$ Q : momentum transfer ; ν : energy transfer to electron • Deep Inelastic scattering :

 $W_i(\nu,Q^2) \to F_{1,2}(x) \qquad x \equiv 2M_P \nu/Q^2$

- Proton as a collection of quasi-free partons, each with a momentum fraction x.
- Partons massless (at the scale of the scattering problem)
- Callan-Gross relation \implies Most partons are spin-half objects
- Sum rules \implies Non-charged partons carry nearly half the momentum.
- Theoretical development : Asymptotic Freedom in non-abelian theories.
 - Charged partons identified as quarks.
 - Neutral partons identified as gluons.
- Experimental development : $e^+e^- \rightarrow 3$ jets
 - Existence of Gluons.
 - Gluons are spin-1.
 - -SU(3)

Then, why do we talk of $\boldsymbol{u}(\boldsymbol{x},Q^2)$?

Running coupling

• Consider a dimensionless physical observable \mathcal{O} . (No directional dependence) Therefore,

$$\mathcal{O} = \mathcal{O}(E_i/E_j, \, m_i/m_j, \, E_i/m_j)$$

- If only a single energy scale E relevant, then $\mathcal{O} = \mathcal{O}(m_i/E, m_i/m_j)$.
- Let $E \gg m_i \quad \forall m_i$. Consider limit $m_i \to 0$. Then \mathcal{O} independent of E !
- Not true in QFT !
- Perturbative calculation of \mathcal{O} (series in coupling const, α_s) requires renormalization to remove ultraviolet divergences.

Introduces a second mass scale μ (point where subtractions are made) !

- $\mathcal{O} = \mathcal{O}(E/\mu)$ and not constant in E! Renormalized α_s also μ -dependent.
- μ is arbitrary!

If bare coupling held fixed, \mathcal{O} cannot depend on μ .

• Dimensionless \mathcal{O} can only depend on E/μ and the renormalized α_s . Hence

$$0 = \mu^2 \frac{d}{d\mu^2} \mathcal{O}\left(\frac{E^2}{\mu^2}, \alpha_s\right) = \left[\mu^2 \frac{\partial}{\partial\mu^2} + \mu^2 \frac{\partial\alpha_s}{\partial\mu^2} \frac{\partial}{\partial\alpha_s}\right] \mathcal{O}$$

• Define

$$t \equiv \ln \frac{E^2}{\mu^2}$$
, $\beta(\alpha_s) = \mu^2 \frac{\partial \alpha_s}{\partial \mu^2}$

Then,

$$0 = \left[\frac{-\partial}{\partial t} + \beta(\alpha_s) \frac{\partial}{\partial \alpha_s}\right] \mathcal{O}$$

• RG equation solved by defining running coupling $\alpha_s(E)$:

$$t = \int_{\alpha_s(\mu)}^{\alpha_s(E)} \frac{dx}{\beta(x)}$$

• Then,

$$\frac{\partial \alpha_s(E)}{\partial t} = \beta \left(\alpha_s(E) \right) , \qquad \frac{\partial \alpha_s(E)}{\partial \alpha_s(\mu)} = \frac{\beta \left(\alpha_s(E) \right)}{\beta \left(\alpha_s(\mu) \right)}$$

• $\mathcal{O}(E^2/\mu^2, \alpha_s(\mu)) = \mathcal{O}(1, \alpha_s(E))$ and all scale dependence comes only from running of α_s

QCD is asymptotically free: α_s(E) → 0 as E → ∞.
For large E, can safely use perturbation theory.
Knowledge of O(1, α_s) to fixed order allows prediction of O(E)

$$\beta(\alpha_s) = -b_0 \alpha_s^2 - b_1 \alpha_s^3 + \mathcal{O}(\alpha_s^4)$$
$$b_0 = \frac{11 C_A - 2 N_f}{12 \pi}$$
$$b_1 = \frac{17 C_A^2 - (5 C_A + 3 C_F) N_f}{24 \pi^2}$$

with $C_A = 3$ $(f_{abc} f_{dbc} = C_A \delta_{ad})$ and $C_F = 4/3$ $(T_a T_a = C_F \text{ in fundamental}).$

Upto 2-loop order [neglecting $\mathcal{O}(\alpha_s^4)$],

$$\ln \frac{Q^2}{\mu^2} = b_0^{-1} \left[\alpha_s^{-1}(Q) - \alpha_s^{-1}(\mu) \right] + b_1 \left[\ln \frac{b_0 \,\alpha_s(Q)}{b_0 + b_1 \,\alpha_s(Q)} - \ln \frac{b_0 \,\alpha_s(\mu)}{b_0 + b_1 \,\alpha_s(\mu)} \right]$$

Given $\alpha_s(E)$, can calculate $\alpha_s(Q)$

To $\mathcal{O}(\alpha_s^3)$

$$\frac{d\alpha_s}{dt} = -b_0 \,\alpha_s^2 \, - b_1 \,\alpha_s^3$$

Scheme dependence:

$$\alpha_s \to \widetilde{\alpha}_s = \alpha_s \left(1 + c \, \alpha_s \right)$$

Then,

$$\frac{d\widetilde{\alpha}_s}{dt} = -b_0\,\widetilde{\alpha}_s^2 \,- b_1\,\widetilde{\alpha}_s^3$$

Thus, b_0 and b_1 are scheme independent.

Infrared divergences

Other infinities exist !

Even in high-energy regime, long-distance aspects cannot be ignored.

Soft or collinear gluon emission \implies infrared divergences in perturbation theory. Light quarks ($m_q \ll \Lambda_{QCD}$) \implies divergences in the $m_q \rightarrow 0$ limit (mass singularities).

Slide 10

Infrared and Collinear Divergences:

2-body :

$$\mathcal{M}_{Z \to f\bar{f}} = \frac{g}{2 \cos \theta_W} \epsilon^{\mu}(P) \,\bar{u}(p_1) \,\gamma_{\mu} \left(v_f + a_f \,\gamma_5\right) v(p_2) \,.$$

3-body :

$$\mathcal{M}_{Z \to f\bar{f}\gamma} = \frac{-g \, e \, Q_f}{4 \, \cos \theta_W} \, \epsilon^{\mu}(P) \, \epsilon^{\nu}(k) \bar{u}(p_1) \left[\gamma_{\nu} \frac{1}{\not{p_1 + k - m}} \, \gamma_{\mu} \left(v_f + a_f \, \gamma_5 \right) \right] \\ + \gamma_{\mu} \left(v_f + a_f \, \gamma_5 \right) \frac{-1}{\not{p_2 + k + m}} \gamma_{\nu} \left[v(p_2) \right]$$

Use

$$\bar{u}(p_1) \gamma_{\nu} \frac{1}{\not p_1 + \not k - m} = \bar{u}(p_1) \gamma_{\nu} \frac{\not p_1 + \not k + m}{2 \, p_1 \cdot k} = \bar{u}(p_1) \frac{2 \, p_{1\nu} + \gamma_{\nu} \, \not k}{2 \, p_1 \cdot k}$$

For soft photons, neglect the terms proportional to k^{μ} in the numerator:

$$\mathcal{M}_{Z \to f\bar{f}\gamma} \approx \frac{-g e Q_f}{4 \cos \theta_W} \epsilon^{\mu}(P) \epsilon^{\nu}(k) \left[\frac{p_{1\nu}}{p_1 \cdot k} - \frac{p_{2\nu}}{p_2 \cdot k} \right] \bar{u}(p_1) \gamma_{\mu} (v_f + a_f \gamma_5) v(p_2)$$
$$= -e Q_f \epsilon^{\nu}(k) \left[\frac{p_{1\nu}}{p_1 \cdot k} - \frac{p_{2\nu}}{p_2 \cdot k} \right] \mathcal{M}_{Z \to f\bar{f}}.$$

Diverges for soft photons $(k^{\mu} \rightarrow 0)$.

Velocity of $f: \beta_f$ angle with photon : $\theta_{f\gamma}$

 $p_1 \cdot k = E_f k_0 \left(1 - \beta_f \cos \theta_{f\gamma} \right)$

 $\mathcal{M}_{Z \to f \bar{f} \gamma}$ diverges when

- photon is soft $(k_0 = 0)$
- For massless fermions, photon collinear with f or \overline{f} .

 $\Gamma(Z \to f\bar{f}) \ll \Gamma(Z \to f\bar{f}\gamma)$ even accounting for the extra factor of α_{em} .

Once all such higher order decays are taken into consideration,

$$Br(Z \to f\bar{f}) \approx 0$$

for the exclusive decay mode!

Costs virtually nothing to radiate soft or collinear photons.

In an unbroken gauge theory, only gauge invariant states can exist as asymptotic states.

For an appropriately defined (inclusive) gauge-invariant state, the branching fraction would be finite and non-zero.

Origin of this infinity related to that in the lowest order QED expression for the annihilation of a massless electron-positron pair, viz.

$$\frac{d\sigma}{d\cos\theta}(e^+e^- \to \gamma\gamma) \sim \frac{1+\cos^2\theta}{\sin^2\theta} \,. \tag{1}$$

Infinities vanish once higher order effects are taken into account.

Amplitude for two-body decay $Z \to f\bar{f}$, but at one-loop.

$$i\,\Gamma_{\mu}^{(1)} = \frac{g\,e^2\,Q_f^2}{4\,\cos\theta_W} \int \frac{d^4k}{(2\,\pi)^4} \left(i\,\gamma_\rho\right) \frac{i}{\not\!p_1 + \not\!k - m} \,\gamma_\mu \left(v_f + a_f\,\gamma_5\right) \frac{i}{\not\!k - \not\!p_2 - m} \left(i\,\gamma_\eta\right) \frac{-i\,g^{\rho\eta}}{k^2}$$

- UV divergence (as $k_{\mu} \rightarrow \infty$) : absorbed through counterterms;
- Infrared and/or collinear divergence as $k_{\mu} \rightarrow 0$ or when k_{μ} parallel to either of external momenta.

$$i\,\Gamma_{\mu}^{(1)} = \frac{-i\,g\,e^2\,Q_f^2}{4\,\cos\theta_W}\,\int \frac{d^4k}{(2\,\pi)^4}\,\gamma_\rho\,\frac{\not\!p_1 + \not\!k}{2\,p_1 \cdot k}\,\gamma_\mu\,(v_f + a_f\,\gamma_5)\,\frac{\not\!k - \not\!p_2}{-2\,p_2 \cdot k}\,\gamma^\rho\,\frac{1}{k^2}$$

- Interference between $\Gamma^{(1)}_{\mu}$ and $\Gamma^{(0)}_{\mu} : \mathcal{O}(\alpha)$ correction to the tree level exclusive decay $Z \to f\bar{f}$, with a soft/collinear divergence.
- Divergence similar to that in the exclusive $Z \to f\bar{f}\gamma$ process.

- Cannot be differentiated in a physical context. Soft/collinear photon not registered as separate entities by any realistic detector.
- Only inclusive processes are physically meaningful. Bloch-Nordsieck theorem: all IR and collinear divergences cancel (once this inclusive set is considered).
- QCD : Kinoshita-Lee-Nauenberg theorem.

Effective photon approximation.

Basic Philosophy of the Parton Model:

If q_{μ} be momentum transfer in electon-hadron scattering,

$$\sigma_{eh}(q, P) = \sum_{\mathcal{P} \in \text{partons}} \int_0^1 dx \ \sigma_{e\mathcal{P}}(q, xP) \ f_{\mathcal{P}/h}(x)$$

- $\sigma_{eh}(q, P)$: inclusive cross section $e(k) + h(P) \rightarrow e(k q) + X(p + q)$
- $\sigma_{e\mathcal{P}}(q, xP)$: elastic cross section for $e(k) + \mathcal{P}(xP) \rightarrow e(k-q) + \mathcal{A}(xP+q)$ where \mathcal{A} is massless : $(xP+q)^2 = 0 \implies x = \frac{-q^2}{2P \cdot q} = \frac{Q^2}{2P \cdot q}$
- f_{P/h}(x) is the distribution of parton A in hadron h probability for a parton of type A to have momentum xP Independent of details of the hard scattering
- the hallmark of factorization.
- Hadronic *inelastic* c.s. \equiv convolution of partonic *elastic* c.s. with parton distributions
- Quantum mechanical incoherence of large-q scattering and the partonic distributions ! Multiply probabilities without adding amplitudes.
- Justification:

nucleon binding : long-time processes do not interfere with short-distance scattering.

- Approximately factorize a $2 \rightarrow n$ process with massless propagator (t/u-channel) in terms of a $2 \rightarrow (n-1)$ process.
- P_{split}
 - $\propto g_s^2 \, C$ where C is a colour factor.
 - function of the fraction x of the momentum of the parent particle that the daughter carries
 - possibly additional dependence on the spin polarizations of the parent and the two daughters
- In the *collinear* limit, may approximate the *leading* behaviour :

$$|\mathcal{M}_n|^2 \approx \left[\frac{4\,g_s^2}{t}\,C\,f(x;\{s_i\}) + \text{non-singular terms}\right]\,|\mathcal{M}_{n-1}|^2$$

'Mandelstam variable' t: nothing but the propagator

- Singularity structure cannot depend on the azimuthal angle ϕ .
- Averaging over ϕ and any other unmeasured attribute \implies 'Splitting function'

$$\hat{P}(z) \equiv \sum_{s_i} \int \frac{d\phi}{2\pi} f(z; \{s_i\})$$

• $\hat{P}(z)$: dynamics-driven ; determined through explicit computations.

• In terms of phase space elements,

$$d\sigma_n = d\sigma_{n-1} \frac{dt}{t} dx \frac{\alpha_s}{2\pi} \hat{P}(x) .$$

• Approximation has served to eliminate one phase space integration.

Spacelike splitting

gluon splitting on incoming line (a)

$$p_2^2 = -2 E_1 E_3 (1 - \cos \theta).$$

Propagator $(1/p_2^2)$ diverges as $E_3 \rightarrow 0$ (soft singularity), or $\theta \rightarrow 0$ (collinear or mass singularity).

If "a" were a massive quark,

$$p_2^2 - m_q^2 = -2 E_1 E_3 \left(1 - v_1 \cos \theta\right)$$

 $E_3 \rightarrow 0$ (soft) divergence remains.

Collinear enhancement; becomes divergence as $v_1 \rightarrow 1 \ (m_q \rightarrow 0)$

If emitted parton c is a quark, vertex factor cancels $E_3 \rightarrow 0$ divergence.

Timelike splitting

splitting on outgoing line (b)

$$p_1^2 = 2 E_2 E_3 (1 - \cos \theta).$$

Propagator diverges when either emitted parton is soft ($E_{2,3} = 0$) or when opening angle $\theta = 0$

If b and/or c are quarks, collinear/mass singularity as $m_q \rightarrow 0$.

Soft quark divergences cancelled by vertex factor.

• Loop diagrams :

possibility of soft and/or collinear configurations of virtual partons within region of integration of loop momenta.

- \implies infrared divergences in loop diagrams.
- IR divergences indicate dependence on long-distance aspects of QCD (not described by PT).
- Divergent propagators imply propagation of partons over long distances.
- For distances comparable with hadron size, quasi-free partons (PT) are confined/hadronized (non-perturbative), and apparent divergences disappear.

Can still use PT, provided we limit ourselves to

• Infrared safe quantities

IR divergences either cancel between real and virtual contributions or are removed by kinematic factors.

Determined primarily by hard, short-distance physics;

long-distance effects give power corrections, suppressed by inverse powers of a large momentum scale.

• Factorizable quantities,

where IR sensitivity can be absorbed into overall non-perturbative factor (determined experimentally).

However, IR divergences must be regularized in PT

(irrespective of whether they cancel or factorize finally)

Ways to regularize:

- Gluon mass regularization: breaks gauge invariance.
- Dimensional regularization: must increase dimension of space-time, $\epsilon = 4 D < 0$. Divergences are replaced by powers of $1/\epsilon$.

Branching probabilities

Matrix element squared for (n + 1) partons in the small-angle region in terms of MEsq for n partons

$$|\mathcal{M}_{n+1}|^2 = \left[\frac{g_s^2}{t} C F(z; \{s_1, s_2, s_3\}) + \text{nonsingular terms}\right] |\mathcal{M}_n|^2$$

 \hat{y}

 p_2

 p_3

 θ_3

 $C: {\rm colour} \ {\rm factor}$

F : momentum dependence of the branching probabilities. $t\equiv p_1^2$

After azimuthal averaging, splitting functions

$$\widehat{P}_{ba}(z) = \sum_{s_1, s_2, s_3} \int \frac{d\phi}{2\pi} F(z; \{s_1, s_2, s_3\})$$

and

$$d\sigma_{n+1} = d\sigma_n \, \frac{dt}{t} \, dz \, \frac{\alpha_s}{2 \, \pi} \, \widehat{P}_{ba}(z)$$

Kinematics:

All momenta defined as outgoing $(p_1 + p_2 + p_3 = 0)$

$$p_1^{\mu} = \left(E_1 + \frac{p_1^2}{4E_1}, 0, 0, E_1 - \frac{p_1^2}{4E_1}\right), \qquad p_2^{\mu} = (E_2, 0, E_2 \sin \theta_2, E_2 \cos \theta_2),$$

Assuming that $p_2^2, p_3^2 \ll p_1^2 \equiv t$

parton (1) is outgoing \Rightarrow timelike branching/splitting. Opening angle : $\theta = \theta_2 + \theta_3$ Energy fraction $z \equiv \frac{E_2}{E_1} \equiv 1 - \frac{E_3}{E_1}$ For small angles, $t = 2 E_2 E_3 (1 - \cos \theta) = z (1 - z) E_1^2 \theta^2 \implies \theta = E_1^{-1} \sqrt{\frac{t}{z (1 - z)}}$

Transverse momentum conservation:

$$\theta = E_1^{-1} \sqrt{\frac{t}{z (1-z)}} = \frac{\theta_2}{1-z} = \frac{\theta_3}{z}$$

Consider case of all three partons being gluons. Triple-gluon vertex :

$$g_s f^{abc} \left[g_{\mu\nu} \left(p_1 - p_2 \right)_{\lambda} + g_{\nu\lambda} \left(p_2 - p_3 \right)_{\mu} + g_{\lambda\mu} \left(p_3 - p_1 \right)_{\mu} \right]$$

To be multiplied by t^{-1} (propagator), and polarization vectors $\epsilon_1^{\mu} \epsilon_2^{\nu}, \epsilon_3^{\lambda}$.

Using $\epsilon_i \cdot p_i = 0$, $V_{3g} = -2 g_s f^{abc} [\epsilon_1 \cdot \epsilon_2 \epsilon_3 \cdot p_2 - \epsilon_2 \cdot \epsilon_3 \epsilon_1 \cdot p_2 - \epsilon_1 \cdot \epsilon_3 \epsilon_2 \cdot p_3]$ Gluons almost on mass-shell \Longrightarrow polarization vectors nearly pure transverse. Resolve into plane polarization states:

 ϵ_i^I : in the plane of branching (y-z)

 ϵ_i^O : out of the plane of branching

$$\epsilon_i^I \cdot \epsilon_j^I = \epsilon_i^O \cdot \epsilon_j^O = -1 \qquad \quad \epsilon_i^I \cdot \epsilon_j^O = \epsilon_i^I \cdot p_j = 0$$

To $\mathcal{O}(\theta)$, $\epsilon_{1}^{I} \cdot p_{2} = -E_{2} \theta_{2} = -z (1-z) E_{1} \theta \qquad \epsilon_{2}^{I} \cdot p_{3} = E_{3} \theta = (1-z) E_{1} \theta \qquad \epsilon_{3}^{I} \cdot p_{2} = -E_{2} \theta = -z E_{1} \theta$ Each combination $\propto \theta$. But propagator has $t^{-1} \propto \theta^{-2}$. θ^{-1} singularity in the amplitude \implies In small angle regime, $|\mathcal{M}_{n+1}|^2 = \left[\frac{4\,g_s^2}{t}\,C_A\,F(z;\{\epsilon_1,\epsilon_2,\epsilon_3\}) + \text{nonsingular terms}\right]\,|\mathcal{M}_n|^2$ where $C_A = 3$ ($f^{abc} f^{dbc} = C_A \delta^{ad}$) and F : put above dot products into V_{3a} $\begin{array}{c|cccc} \epsilon_1 & \epsilon_2 & \epsilon_3 & \hline & F(z; \{\epsilon_1, \epsilon_2, \epsilon_3\}) \\ \hline \text{in} & \text{in} & (1-z)/z + z/(1-z) + z(1-z) \\ \hline \end{array}$ z(1-z)in out out F: Others zero. out in out (1-z)/zz/(1-z)out out in

Average with respect to ϵ_1 and sum over $\epsilon_{2,3}$:

$$\widehat{P}_{gg}(z) = C_A \left[\frac{1-z}{z} + \frac{z}{1-z} + z(1-z) \right]$$

unregularized gluon splitting function.

Are neglecting angular correlations

(configurations in which the polarization of the branching gluon lies in plane of branching).

Quite weak: coefficient (1 - z) vanishes in the enhanced regions $z \rightarrow 0, 1$

Maximum at z = 1 (still only 1/9 of the unpolarized contribution).

Splitting function for fermions

Using Weyl representation of Dirac matrices

$$\gamma^{0} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \qquad \gamma^{i} = \begin{pmatrix} 0 & -\sigma^{i} \\ \sigma^{i} & 0 \end{pmatrix}$$

Solution of Dirac eqn:

$$u_{+}(p) \equiv u_{R}(p) = \left[\sqrt{p_{+}}, \sqrt{p_{-}} e^{i\theta_{p}}, 0, 0\right]^{T} \qquad u_{-}(p) \equiv u_{L}(p) = \left[0, 0, \sqrt{p_{-}} e^{-i\theta_{p}}, -\sqrt{p_{+}}\right]^{T}$$

where

$$p_{\pm} = p^0 \pm p^3$$
 $e^{\pm i\theta_p} = \frac{p^1 \pm i p^2}{\sqrt{p_1^2 + p_2^2}} = \frac{p^1 \pm i p^2}{\sqrt{p_+ p_-}}$

and normalization is

$$u_{\pm}^{\dagger}(p) \ u_{\pm}(p) = 2 \, p_0$$

Gives

$$\overline{u_{+}}(p) = \begin{bmatrix} 0 , 0 , \sqrt{p_{+}} , \sqrt{p_{-}} e^{-i\theta_{p}} \end{bmatrix}^{T} \qquad \overline{u_{-}}(p) = \begin{bmatrix} \sqrt{p_{-}} e^{i\theta_{p}} , -\sqrt{p_{+}} , 0 , 0 \end{bmatrix}^{T}$$

Note

$$\overline{u_+}(p_i)\,u_+(p_j)=0=\overline{u_-}(p_i)\,u_-(p_j)$$

Not so for $\overline{u_+}(p_i) u_-(p_j)$ or $\overline{u_-}(p_i) u_+(p_j)$

Consider $g(p_1) \rightarrow q(p_2) + \bar{q}(p_3)$ where

$$p_1 = \left(E_1 + \frac{p_1^2}{4E_1}, 0, 0, E_1 - \frac{p_1^2}{4E_1}\right), p_2 = (E_2, E_2 \theta_2, 0, E_2), p_3 = (E_3, -E_3 \theta_3, 0, E_3)$$

Then,

$$u_{+}(p_{3}) = v_{-}(p_{3}) = \sqrt{2E_{3}} \left[1, \frac{-\theta_{3}}{2}, 0, 0 \right]^{T}, \qquad u_{+}^{\dagger}(p_{2}) = \sqrt{2E_{2}} \left[1, \frac{\theta_{2}}{2}, 0, 0 \right]^{T}$$

and the polarization vector choices are

 $\epsilon_1 = (0, 1, 0, 0)$ (in plane) $\epsilon_2 = (0, 0, 1, 0)$ (out of plane)

The interaction vertex is $g_s \, \bar{u}_2 \, \gamma_\mu \, T_a \, v_3 \, \epsilon^\mu$ Then,

$$|\mathcal{M}_{n+1}|^2 \sim \frac{g_s^2}{t} T_R F(z;\epsilon_1 \lambda_2,\lambda_3) |\mathcal{M}_n|^2$$

where $T_R = tr(T_a T_a)/8 = 1/2$ and

ϵ_1	λ_2	λ_3	$F(z; \{\epsilon_1, \lambda_2, \lambda_3\})$
1	\pm	Ŧ	$(1-2z)^2$
2	\pm	Ŧ	1

Summing (averaging) over polarizations,

$$\hat{P}_{qg} = T_R \frac{(1-2z)^2 + 1}{2} = \frac{z^2 + (1-z)^2}{2}$$

In this case, strong anticorrelation between the polarization and the plane.

Relations between Splitting Functions

Consider, for example, the splitting

$$\Pi_1(P) \to \Pi_2(x P) + \Pi_3((1-x) P)$$

Hence,

$$\hat{P}_{\Pi_1 \to \Pi_2}(x) = \hat{P}_{\Pi_1 \to \Pi_3}(1-x) \; . \label{eq:phi_started_starte$$

Isolate the colour factors and write $\hat{P}_i(x)$ in terms of "reduced" splitting functions $\hat{P}_i^R(x)$.

$\hat{P}_{q \to q}(x) = C_F \hat{P}_{q \to q}^R(x)$	$\hat{P}_{q \to g}(x) = C_F \hat{P}^R_{q \to g}(x)$
$\hat{P}_{g \to q}(x) = T_R \hat{P}^R_{g \to q}(x)$	$\hat{P}_{g \to g}(x) = N_c \hat{P}^R_{g \to g}(x)$

Slide 28

Crossing symmetry :

$$\hat{P}^R_{\Pi_2 \to \Pi_1}(x) = (-1)^{2s_1 + 2s_2 + 1} x \hat{P}^R_{\Pi_1 \to \Pi_2}(x^{-1}),$$

 $q_i \rightarrow g + X$ splitting $\iff g \rightarrow \bar{q}_i + X$ splitting

 s_i : spins of the partons.

Paradoxical? ($x < 1 \Longrightarrow x^{-1} > 1$):

The two processes have opposite temporal ordering !

Consider pure susy-QCD : only gluons and gluinos

all massless and part of the same vector superfield.

Four possible splittings;

Expressible in terms of supergraphs;

SUSY relates all the four reduced splitting functions

$$\hat{P}^R_{g \to \tilde{g}}(x) + \hat{P}^R_{g \to g}(x) = \hat{P}^R_{\tilde{g} \to g}(x) + \hat{P}^R_{\tilde{g} \to \tilde{g}}(x)$$

Relation independent of the fermion representation!

Generalizes to real QCD (in the massless limit)

$$\hat{P}^R_{g \rightarrow q}(x) + \hat{P}^R_{g \rightarrow g}(x) = \hat{P}^R_{q \rightarrow g}(x) + \hat{P}^R_{q \rightarrow q}(x) \; . \label{eq:prod}$$

Thus,

- Weizsäcker-Williams calculation $\Longrightarrow \hat{P}^R_{q \to g}(x)$
- $\bullet \Longrightarrow \hat{P}^R_{q \to q}(x).$
- Crossing symmetry : $\hat{P}^R_{g \to q}(x)$
- SUSY : $\hat{P}^R_{g \to g}(x)$.
- Put in colour factors.

Do not need to calculate anything beyond QED!

Slide 31

Finally, the unregulated branching probabilities:

$$\begin{aligned} \widehat{P}_{gg}(z) &= C_A \left[\frac{1-z}{z} + \frac{z}{1-z} + z(1-z) \right] \\ \widehat{P}_{gq}(z) &= C_F \left[\frac{1+(1-z)^2}{z} \right] \\ \widehat{P}_{qg}(z) &= T_R \left[z^2 + (1-z)^2 \right] \\ \widehat{P}_{qq}(z) &= C_F \frac{1+z^2}{1-z} \end{aligned}$$

 $C_F = 4/3$, $C_A = 3$, $T_R = 1/2$ Unregulated because they contain singularities. (bad things)