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Prehistory : Naive Parton Model

eci— euVSeP — eP:

Proton is not point-particle — Introduction of Electric and Magnetic Form factors.

e Inelastice P scattering : Structure factot¥;(v, Q?)
() : momentum transfer; v : energy transfer to electron

e Deep Inelastic scattering .
Wi(v, Q) — Fio(x) x = 2Mpr/Q*

— Proton as a collection of quasi-free partons, each with a momefnaoton .

— Partons massless (at the scale of the scattering problem)

— Callan-Gross relation —- Most partons are spin-half objects

— Sum rules — Non-charged partons carry nearly half the momentum.

e Theoretical development : Asymptotic Freedom in non-abehaoties.

— Charged partons identified as quarks.
— Neutral partons identified as gluons.

e Experimental developmenkie~ — 3 jets

— Existence of Gluons.
— Gluons are spin-1.
—SU(3)

Then, why do we talk ofi(z, Q%) ?

U)
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Prehistory : Naive Parton Model

¢ Rutherford scattering :
spin-0 non-relativistic particle on heavy target (no recoil)

(), = 751
dQ)run. 4 E* sint(0/2)
e Mott scattering :

spin-0 relativistic particle on heavy target (with recoil)

do do E
9 () T o9)2
(dQ)Mott. (dQ>Ruth. E o ( / )

®clL— el
(da) (da) E'[ ,0 ¢ 50 (da) q 5 0
— === — |cos” = — sin” —| = | —= 1 — tan” —
d e, \dQ) run. E 2 2M?27 2 A Mot 2 M2 2
e Rosenbluth scateP — eP) :
Proton is not point-particle — Introduction of Electric and Magnetic Form factors.

VEVEA DY VE

2F2 2 0
{F2 1 2}—q(F1+F2)2tan22

pr— M

e Inelastice P scattering : Structure factof¥;(v, Q?)
() : momentum transfer; v : energy transfer to electron

U)
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e Deep Inelastic scattering .
Wi(v, Q*) — Fia(x) x = 2Mpv/Q?

— Proton as a collection of quasi-free partons, each with a momefnaotion .

— Partons massless (at the scale of the scattering problem)

— Callan-Gross relation — Most partons are spin-half objects
—Sumrules = Non-charged partons carry nearly half the momentum.

e Theoretical development : Asymptotic Freedom in non-abehaoties.

— Charged partons identified as quarks.
— Neutral partons identified as gluons.

e Experimental developmenk e~ — 3 jets

— Existence of Gluons.
— Gluons are spin-1.
—SU(3)

Then, why do we talk ofi(z, Q?) ?
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Running coupling

e Consider a dimensionless physical observédhl€No directional dependence) Therefore,

O = O(E;/E;, mi/m;, E;/m;)

e If only a single energy scall relevant, ther© = O(m;/E, m;/m;).

o Let £ > m; VYm,;. Consider limitm; — 0.

ThenQ© independent of !

e Not true in QFT!

e Perturbative calculation a® (series in coupling consty,) requires renormalization to
remove ultraviolet divergences.
Introduces aecond mass scajle(point where subtractions are made) !

e O = O(F/u) and not constant i
Renormalizedy, alsou-dependent.

e 1 IS arbitrary!

If bare coupling held fixed?) cannot depend ox.
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e Dimensionles®) can only depend o’/ and the renormalized,. Hence

d E? 0 , dag 0
_ 2 _ 2 S
0 Md/ﬂo(/ﬂ’&) [ au —|—,u o2 aO&JO
e Define = 0
Ozs
Then, 5 5
0— {(‘% + Bla) an 0
e RG equation solved bgtefining running coupling,(F):
B /as(E) dx
st ()
snen 90,(F) 90,(F) _ §(0s(F)
Qs E g E 6 Qg E
- 5 as( B ) -
ot (@(E)) Oag(p) B las(p))

o O(E?/1i2, as(1)) = O(1, s E)) andall scale dependence comes only from running.of

e QCD is asymptotically freeas(F) — 0 asE — oo.
For largeF, can safely use perturbation theory.
Knowledge ofO(1, «;) to fixed order allows prediction @ (F)
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Blag) = —by ozg — by ozi -+ O(aﬁ)

110A—2Nf
by =
12
17031— (50A+3OF)NJC
by = 5
24 1

with Cy = 3 (fabe fave = Cadq) andCr = 4/3 (T, T, = Cr in fundamental).

Upto 2-loop order [neglectin@(a?)],

In 1632 = by [ozs_l(Q) — ozs_l(u)} + by {ln

Givena(E), can calculatev,(Q)

boas(@) | boas(p)
by + b1 as(Q) by + by ()

To O(a?)
dog

dt

= —bo Oz? - b1 CY?

Scheme dependence:

as — Qs = as (14 cay)
Then,
daor,
dt
Thus,b, andb; are scheme independent.

= —bpa> — b a’
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Current experimental results:

as(My) = 0.1182 = 0.0027 in MS at NNL

[Bethke,hep-ph/0407021]

05 April 2004
o 7\
Dat Theory Q E‘ g
a
(IS(Q) : ’ zZ Z 5
Deep Inelastic Scattering A
0.4 e*¢ Annihilation o e
. Hadron Collisions ) N
Heavy arkonia B ®
eavy Quarkoni y
4 Ay o (M)
; 245 MeV ----0.1209
0.3} Q('E 210 MeV 0.1182 ] 7
O(org) e
180 MeV — —0.1155
N J
0.2
0.1

et e[jets & shapes 44 GeV] +H—-o—
et e [jets & shapes 58 GeV] o
pﬁ -—= Bb X I—O:—!
pp, pp -->y X —Oo—il
o(pp --> jets) R S

|

I'(zO--> had) [LEP] o

et e[scaling. viol.] 5

DIS [pol. strct. fctn.] —o——

DIS [Bj-SR] — o
DIS [GLS-SR] ——L
t-decays [LEP] g
xF5 [v -DIS] —
F, [e-,u-DIS] o)
DIS [ep —> jets] —o—
QQ + lattice QCD — o
Y decays .

|
ee B ._Eo_.

et e[jets & shapes 14 GeV] —o——
e e[jets & shapes 22 GeV]
€' e[jets & shapes 35 GeV]

et e [Ophadl E ®

et e [4-jet rate] +OH

jets & shapes 91.2 GeV —TO—
jets & shapes 133 GeV —o—
jets & shapes 161 GeV —0——

jets & shapes 172 GeV  +——o——
jets & shapes 183 GeV
jets & shapes 189 GeV —O—
jets & shapes 195 GeV
jets & shapes 201 GeV
jets & shapes 206 GeV

OI.12 | OI.14
os(My)

0.08 0.10
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Infrared divergences

Other infinities exist !
Even in high-energy regime, long-distance aspects cannonbedd.

Soft or collinear gluon emissioa=- infrared divergences in perturbation theory.
Light quarks {n, < Agcp) = divergences in they, — 0 limit (mass singularities).
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Infrared and Collinear Divergences:

f(p1
Z(pP)
f(p2
(a)
2-body :
g ,
MZ—>ff 2 cos by e'(P) u(p1) Yu (Uf + ay ¥s) v(p2) -
3-body :
- _gle I v — 1
MZ—>fffy 1 cos by € (P) € (k)u(pl) T b+ — m’Yu (Uf T ay 75)
o (vr +arm) g ] v(p2)
Use
P1 Vuj)1+%_m P1) T 2]91]43 P1 2p1/€

For soft photons, neglect the terms proportionatten the numerator:
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My i = w(p1) v (Vg + arys) v(p2)

Diverges for soft photons:(* — 0).
Velocity of f : 3; angle with photon 8,

p1-k=E;ky(l— By cosby,)
M s, diverges when
e photon is soft £, = 0)

e For massless fermions, photon collinear witbr f.

I'Z — ff) < I(Z — ffv) even accounting for the extra factor®f,,.
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Once all such higher order decays are taken into consideration,
Br(Z — ff)=0

for the exclusive decay mode!
Costs virtually nothing to radiate soft or collinear photons.
In an unbroken gauge theory, only gauge invariant states canasxasymptotic states.

For an appropriately defined (inclusive) gauge-invariant stiagghranching fraction would be fini
and non-zero.

Origin of this infinity related to that in the lowest order QED esgsion for the annihilation of
massless electron-positron pair, viz.

do (e ) 1+ cos? 0
ete” — ~N
d cos R

(1)

sin? 6
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Infinities vanish once higher order effects are taken intmant.

Amplitude for two-body deca)Z — ff, but at one-loop.

i rj}

_ge Qf _ 1 ? , —1 g"
_4cos<9w/ Zp;b1+l(;— V(Uf—i_af%)%—;bg—m(z%) k2
e UV divergence (ag, — oo) . absorbed through counterterms;

e Infrared and/or collinear divergence/as— 0 or whenk,, parallel to either of external momen
; 2 4
_ —ige’ Q% , d'k b+ k k— o 1
) — f p
P 4 cos Oy / (2m)* p2p k%(vf+af%> 2192-167 k2

e Interference between() andI"?) : O(«) correction to the tree level exclusive decay— ff,
with a soft/collinear divergence.

e Divergence similar to that in the exclusive— f f~ process.

—26 Qf/ d4]€ k — pg
*—2py - k

p+k 1

(1) —
! 2p1 -k K2

# 4 cos Oy

(—29) Vu (vf +ags)

e Cannot be differentiated in a phyS|caI context.
Soft/collinear photon not registered as separate entitiesoyeatistic detector.

e Only inclusive processes are physically meaningful.
Bloch-Nordsieck theorem: all IR and collinear divergences eh(ance this inclusive set
considered).

« QCD : Kinoshita-Lee-Nauenberg theorem.

ta.
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A more complicated examplee™ + =~ —e” + W™ +y,

e o % ;
Z W~ W= Z
e e e e
8 W~ W= W
e e e Ve ﬁ
Dominating diagrams+ in the “t-channel”. Collinear photons
Need to treat this carefully keeping trackof.
Treat theelectron as a “source” for the!! (Weizsacker-Williams spectrunp)
Starting with an electron of energy, (Tutorial)

1+(1—2)?  E?
Prob(collinear photon of energy x ) = P, .(x) = 2& Gl In
T

27
x me

! infrared behaviour of m. . regularizes collinear singulari
Dominant contribution :

oglep—e X)= /d:l: Py e(z) o(yp — X).

Effective photon approximation.
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Basic Philosophy of the Parton Model:

If ¢, be momentum transfer in electon-hadron scattering,

(@, P)= X [ dzop(q,aP) fpu(x)

Pepartons

e o.,(q, P) : inclusive cross sectioa(k) + h(P) — e(k — q) + X(p + q)

o OeP(Qa QZ'P> :
elastic cross sectidior e(k) + P(zP) — e(k — q) + A(zP + q)
2 Q2
whereA is massless (zP +¢)> =0  — S
A (zP + q) T P g 2P 4

e fp/u(x) is thedistribution of partonA in hadronh
probability for a parton of typed to have momentum P
Independent of details of the hard scattering

¢ the hallmark offactorization.
e Hadronicinelastic c.s.= convolution of partoni@lastic c.s. with parton distributions

e Quantum mechanical incoherermfdarge scattering and the partonic distributions !
Multiply probabilities without adding amplitudes.

¢ Justification:
nucleon binding : long-time processes
do not interfere with short-distance scattering.
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e Approximately factorize @ — n process with massless propagatgrchannel)
in terms of & — (n — 1) process.

L Psplit
— o g> C' where('is a colour factor.
— function of the fractionr of the momentum of the parent particle that the daughter cartjies
— possibly additional dependence on the spin polarizatiotiseoparent and the two daughtgrs
e In thecollinear limit, may approximate théeading behaviour :

4 2
‘Mn‘Q ~ 9s

C f(x;{s;}) + non-singular tern}s M2

‘Mandelstam variablet : nothing but the propagator
e Singularity structure cannot depend on the azimuthal apgle

e Averaging ovelkp and any other unmeasured attribute —- ‘Splitting function’
. do
Pl)=% [ flz{s}).

o ]5(2) . dynamics-driven ; determined through explicit computations.
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¢ In terms of phase space elements,

do, = do,,_1 n de — P

dt

&S A
2T

e Approximation has served to eliminate one phase space intmyrat
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Spacelike splitting Timelike splitting

Spacelike splitting
gluon splitting on incoming lined|

p3 = —2FE, B3 (1 — cosf).

Propagator(/p3) diverges asu; — 0 (soft singularity, or§ — 0 (collinear or mass singularity

If “ a” were a massive quark,

ps —m; =—2E; E3(1 — v cosf)
F35 — 0 (soft) divergence remains.
Collinear enhancement; becomes divergencg as 1 (m, — 0)

If emitted partonc is a quark, vertex factor cancets — 0 divergence.
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Timelike splitting
splitting on outgoing linek)

p] =2 E; B3 (1 — cos?).

Propagator diverges when either emitted parton is g6ft & 0) or when opening anglé = 0
If b and/orc are quarks, collinear/mass singularityras — 0.

Soft quark divergences cancelled by vertex factor.

e Loop diagrams

possibility of soft and/or collinear configurations of virtyartons within region of integratic
of loop momenta.

-

— infrared divergences in loop diagrams.

¢ IR divergences indicate dependence on long-distance asge@D (not described by PT).
e Divergent propagators imply propagation of partons over lostpdces.

e For distances comparable with hadron size, quasi-free partonsaf@éTgonfined/hadronizg
(non-perturbative), and apparent divergences disappear.

W

n
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Can still use PT, provided we limit ourselves to

¢ Infrared safe quantities
IR divergences either cancel between real and virtual conioifiitor are removed by

kinematic factors.
Determined primarily by hard, short-distance physics;

long-distance effects give power corrections, suppressed leysayowers of a large
momentum scale.

e Factorizable quantities
where IR sensitivity can be absorbed into overall non-perturbdigtor (determined

experimentally).

However, IR divergences must begularized in PT
(irrespective of whether they cancel or factorize fine

Ways to regularize:

e Gluon mass regularization: breaks gauge invariance.
e Dimensional regularizatiormustincreasedimension of space-time,= 4 — D < 0.
Divergences are replaced by powerd of .




Slide 21

Branching probabilities

Matrix element squared forn(+ 1) partons p1—
in the small-angle region
in terms of MEsq fom partons

2
IMi]? = gts CF(Z; {s1, 59, Sg}) + nonsingular terms| |M,,|?

C' : colour factor
F : momentum dependence of the branching probabilities.

tzp%

After azimuthal averagingsplitting functions

_ do
Pyo(z) = 31%,53 /27T F(z;{s1, 52, 53})
and "
Qg —
d0n+1 = dO'n ? dz ﬂ Pba(Z)
Kinematics:

All momenta defined as outgoing;(+ ps + p3 = 0)

2 2

P P
F=|FE, +—.0,0 F — —
P1 ( L 4E17 ol 4E1)7

Assuming thap? , p? < p? =
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parton(1) is outgoing

— timelike branching/splitting. _‘?T
Opening angle 6 = 0, + 0 & h
Energy fraction
by | Es
L= T = T
| T

For small angles,
t=2FE,F5(1 —cosf) =z (1—2)EL6? — 0= FE "

Transverse momentum conservation:

QZE—l t = 92 :%
P Nz(l—2) 1-2 =z

Consider case of athree partons being gluonsriple-gluon vertex :

Js fabc [QW (pl — p2>A + gur (pz — ps)u + 9 (ps - pl)u]
To be multiplied byt ! (propagator), and polarization vectets?, «;.

Usinge; - p; = 0,
Vag= =20, f" [e1-€re3-pa—€2-€3€1 - Py — €1 - €3 €2 - 3]

Gluons almost on mass-shel:- polarization vectors nearly pure transverse.
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Resolve into plane polarization states:
e/ = in the plane of branching (y-z)

I I _ O O _ I

To O(6),
E{'pg = —Eg(gg = —z(l—z)E19
Each combinationx 6.

— 6~! singularity in the amplitude

In small angle regime,

4
‘Mn—|—1‘2 -

t
whereCy = 3 (f® f¥ = C, §°?) and

- €

€£°p3:E39:(1—Z)E1(9

But propagator has t—! oc 672,

2
s 04 F(z;{e1, €2, €3}) + nonsingular terms| |M,,|*

€6 € € F(z:{e1, €2, €3})

in in in|(1—z2)/z+2/(1—2)+2(1—2)
F: in out out 2(1 = 2)

out in out (1—2)/z

out out in z/(1—2z)

¥ : out of the plane of branchir

o _ I _
i =¢-pi=0

Eé'pQZ—EQHI—ZEle

F': put above dot products infid;,

Others zero.
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Average with respect te, and sum ovee, s:

_ 1 —z z
P, =C 1 —
99(2) AT + 1_ +2(1—2)

unregularized gluon splitting function.

Are neglecting angular correlations
(configurations in which the polarization of the branching gliesin plane of branching

Quite weak: coefficientl — z) vanishes in the enhanced regians- 0, 1

N

Maximum atz = 1 (still only 1/9 of the unpolarized contribution).
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Splitting function for fermions

Using Weyl representation of Dirac matrices
o (01 i [ 0 —¢
T=l10) Tl 0

}T

Solution of Dirac eqn:

ui(p) = ur(p) = {\/II /P e 0,0

where

u(p) = urlp) = [0,0, poe ™, iz |

+if) p'Eip’ _ p'Eip?

0 3
D+ =7P + P e — —
Vpi+Dp5 /DD

and normalization is
ul(p) us(p) = 2po
Gives
w(p) = (0.0, i Voo™ ) = [Vim e, By 0,0
Note
ur(pi) us(p;) = 0 =u—(p;) u—(pj)

Not so foru(p;) u_(p;) or u=(p;) u.(p;)
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Considery(pi) — q(p2) + q(p;) where

p1= (E1 + 4pE%1’O’ 0, By — fgl) ,p2 = (B2, B2 05,0, Ey) ,p3 = (B3, —E303,0, Ej3)
Then,
u+(p3)—v(p3)—\/2—E3[1,_2‘93,0,0T, UL(W):\/E{LQ;ﬂvO]
and the polarization vector choices are
e1 = (0,1,0,0) (in plane) eo = (0,0,1,0) (out of plane)

The interaction vertex ig; s v, 1y, vs €
Then,

2
Mo~ % T F(z:0 0o, ) [ MG
whereTy = tr(1,7T,)/8 = 1/2 and

€1 A2 Az | Fl(zi{er, Ao, As})
1 + F (1 —22)*
2 + F 1

Summing (averaging) over polarizations,

A 1—2224+1 224 (1 —2)2
RPN UELE SN S LS

In this case, strong anticorrelation between the polarizatidrtiaaplane.
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Relations between Splitting Functions

Consider, for example, the splitting

Hl(P) —>H2(£L’P>+H3<(1—ZC>P> .

Hence,

pﬂ1—>ﬂz($) = pfh—ﬂs(l —z).

Isolate the colour factors and wrife(x) in terms of “reduced” splitting function(x).

pq—w(a?) — Cp Pf!

A A

Pyg(x) = Ty P!

q—>q<x) pq_@(ﬂf)

g—>q(aj) Pg_@(aj)

— O Ph

q—9g

— N.Ppn

()
()
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Crossing symmetry q;i — g + X splitting — g — q; + X splitting
Py (@) = (=122 B (7Y

s; . spins of the partons.

Paradoxical?A < 1 = 27! > 1):

The two processes have opposite temporal ordering !
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Consideroure susy-QC Donly gluons and gluinos
all massless and part of the same vector superfield.
Four possible splittings;

Expressible in terms of supergraphs;

SUSY relates all the four reduced splitting functions

>R >R
e, (@) + P ()

Relation independent of the fermion representation!

(z) + P

_ DR
g—>g(x) T P

g—yg

Generalizes to real QCD (in the massless limit)

PE (x)+ PR

9—q 9g—g

(x) = PR, (z)+ PR, ().

q—4g
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Thus,

o Weizsacker-Williams calculation=> P, ()

o —> PR ().

e Crossing symmetry P, (z)
o SUSY :PE ().
e Put in colour factors.

Do not need to calculate anything beyond QED!
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Finally, theunregulated branching probabilities:

_ (1 — 2z z
Poylz) = Ca |~ + 7 +2(1-2)

5 14+ (1 — 2)?
Py(z) = CF ( )

P,(z) = Tg [:z?+(1 — z)’]

—~ 14 22
-%A@ = CF

1 —2z

Cr=4/3,04=3,Tp=1/2
Unregulated because they contaimgularities (bad things)




