Particle Detection in High-Energy Physics Experiments Part -II

Naba K Mondal TIFR, Mumbai

Particle detection Principle

In order to detect a particle

- it must interact with the material of the detector
- transfer energy in some recognizable fashion
- i.e. The detection of particles happens via their energy loss in the material it traverses ...

Possibilities:

Charged particles

Hadrons

Photons

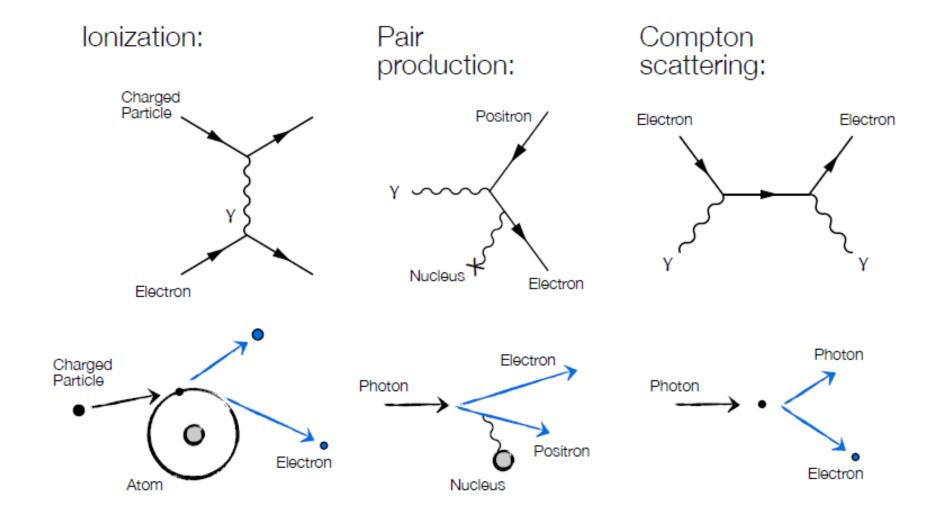
Neutrinos

Ionization, Bremsstrahlung, Cherenkov ...

Energy loss

by multiple reactions

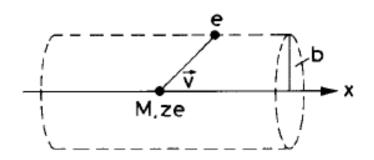
Nuclear interactions


Photo/Compton effect, pair production

Weak interactions

Total energy loss via single interaction

charged particles


Particle Interactions: Examples

Energy Lass by Ionisation: Bethe-Bloch Formula

Particle with charge ze and velocity v moves through a medium with electron density n.

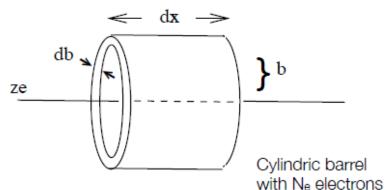
Electrons considered free and initially at rest.

Interaction of a heavy charged particle with an electron of an atom inside medium.

Momentum transfer:

$$\Delta p_{\perp} = \int F_{\perp} dt = \int F_{\perp} \frac{dt}{dx} dx = \int F_{\perp} \frac{dx}{v}$$

 Δp_{\parallel} : averages to zero


Symmetry!

$$=\int_{-\infty}^{\infty}\frac{ze^2}{(x^2+b^2)}\cdot\frac{b}{\sqrt{x^2+b^2}}\cdot\frac{1}{v}\;dx=\frac{ze^2b}{v}\left[\frac{x}{b^2\sqrt{x^2+b^2}}\right]_{-\infty}^{\infty}=\frac{2ze^2}{bv}$$

Bathe-Block: - Classical derivation

Energy transfer onto single electron for impact parameter b:

$$\Delta E(b) = \frac{\Delta p^2}{2m_{\rm e}}$$

Consider cylindric barrel \rightarrow N_e = n·(2 π b)·dbdx

Energy loss per path length dx for distance between b and b+db in medium with electron density n:

Energy loss!

$$-dE(b) = \frac{\Delta p^2}{2m_e} \cdot 2\pi nb \, db \, dx = \frac{4z^2 e^4}{2b^2 v^2 m_e} \cdot 2\pi nb \, db \, dx = \frac{4\pi \, n \, z^2 e^4}{m_e v^2} \frac{db}{b} dx$$

Diverges for b \rightarrow 0; integration only for relevant range [b_{min}, b_{max}]:

$$-\frac{dE}{dx} = \frac{4\pi \, n \, z^2 e^4}{m_{\rm e} v^2} \cdot \int_{b_{\rm min}}^{b_{\rm max}} \frac{db}{b} = \frac{4\pi \, n \, z^2 e^4}{m_{\rm e} v^2} \, \ln \frac{b_{\rm max}}{b_{\rm min}}$$

Bethe-Bloch Formula

$$-\left\langle \frac{dE}{dx}\right\rangle = Kz^2 \frac{Z}{A} \frac{1}{\beta^2} \left[\frac{1}{2} \ln \frac{2m_e c^2 \beta^2 \gamma^2 T_{\text{max}}}{I^2} - \beta^2 - \frac{\delta(\beta \gamma)}{2} \right]$$

density

$$K = 4\pi N_A r_e^2 m_e c^2 = 0.307 \text{ MeV g}^{-1} \text{ cm}^2$$

$$T_{\text{max}} = 2m_e c^2 \beta^2 \gamma^2 / (1 + 2\gamma m_e / M + (m_e / M)^2)$$

[Max. energy transfer in single collision]

z : Charge of incident particle

M : Mass of incident particle

Z: Charge number of medium

A : Atomic mass of medium

Mean excitation energy of medium

δ : Density correction [transv. extension of electric field]

 $N_A = 6.022 \cdot 10^{23}$

[Avogardo's number]

 $r_e = e^2/4\pi\epsilon_0 m_e c^2 = 2.8 \text{ fm}$

[Classical electron radius]

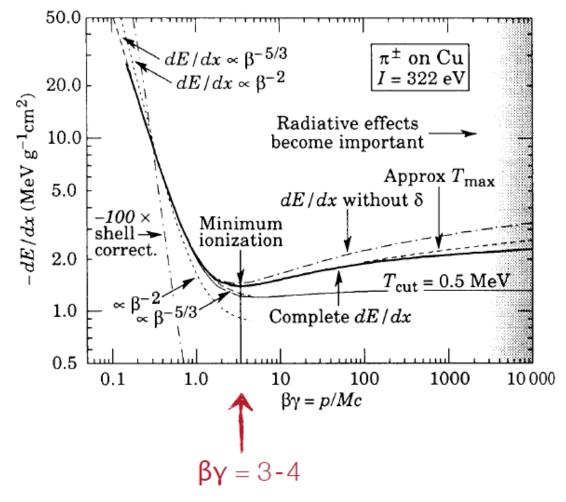
 $m_e = 511 \text{ keV}$

[Electron mass]

 $\beta = V/C$

[Velocity]

 $\gamma = (1-\beta^2)^{-2}$


[Lorentz factor]

Validity:

 $.05 < \beta \gamma < 500$

 $M>m_{\mu}$

Energy loss of pions in Cu

Minimum ionising Particles: $\theta_V = 3-4$

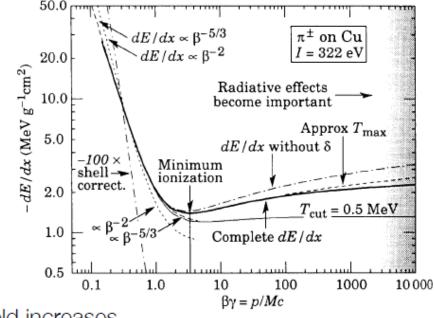
dE/dx falls : β^{-2}

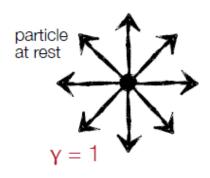
dE/dX rises: $ln(\beta\gamma)^2$ Relativistic rise

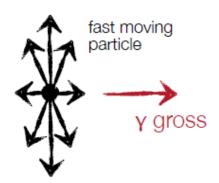
Saturation at large $\beta \gamma$ due to Density effect (correction δ)

Understanding Bethe-Bloch

$1/\beta^2$ -dependence:


Remember:


$$\Delta p_{\perp} = \int F_{\perp} dt = \int F_{\perp} \frac{dx}{v}$$


i.e. slower particles feel electric force of atomic electron for longer time ...

Relativistic rise for $\beta \gamma > 4$:

High energy particle: transversal electric field increases due to Lorentz transform; $E_y \rightarrow \gamma E_y$. Thus interaction cross section increases ...

Corrections:

low energy : shell corrections

high energy: density corrections

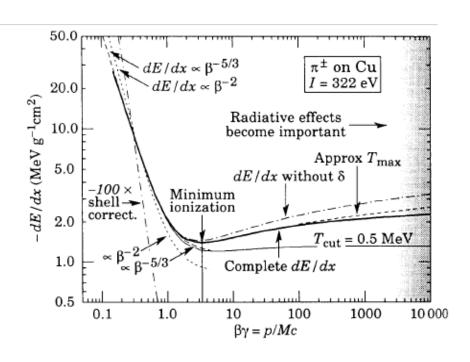
Understanding Bethe-Bloch

Density correction:

Polarization effect ... [density dependent]

Shielding of electrical field far from particle path; effectively cuts of the long range contribution ...

More relevant at high γ ... [Increased range of electric field; larger b_{max}; ...]

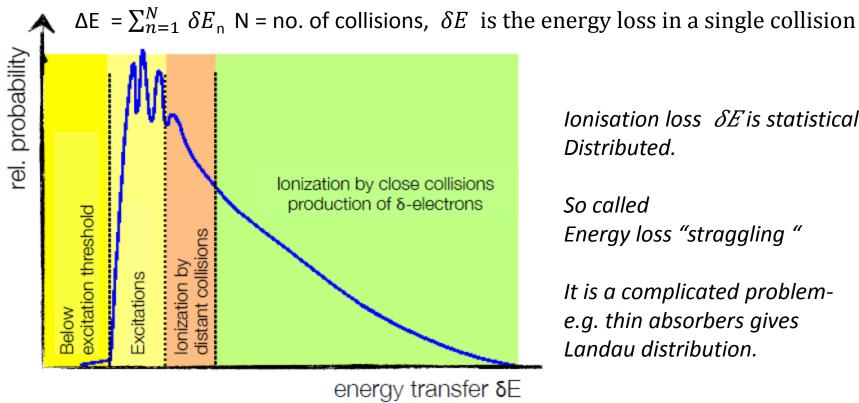

For high energies:

$$\delta/2 \rightarrow \ln(\hbar\omega/I) + \ln\beta\gamma - 1/2$$

Shell correction:

Arises if particle velocity is close to orbital velocity of electrons, i.e. $\beta c \sim v_e$.

Assumption that electron is at rest breaks down ... Capture process is possible ...

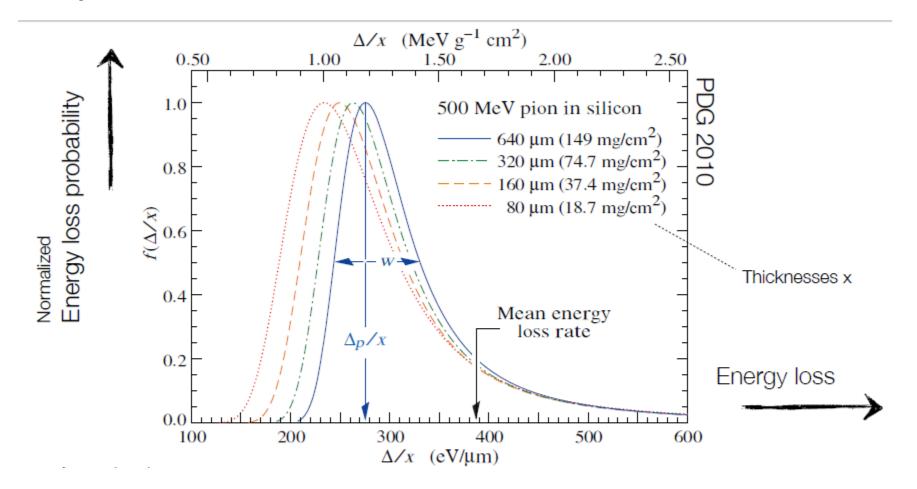


Density effect leads to saturation at high energy ...

Shell correction are in general small ...

dE/dx Fluctuations

Bethe-Block describe the mean energy loss.; measurement via energy loss ΔE in a material with thickness ΔX with



Ionisation loss δE is statistically Distributed.

So called Energy loss "straggling"

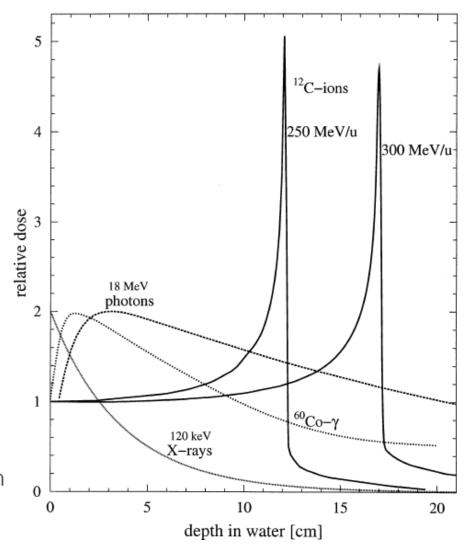
It is a complicated probleme.g. thin absorbers gives Landau distribution.

dE/dX Fluctuations - Landau Distribution

Particle Energy Deposit:

 $\beta \gamma > 3.5$:

$$\left\langle \frac{dE}{dx} \right\rangle \approx \left. \frac{dE}{dx} \right|_{\min}$$


 $\beta \gamma < 3.5$:

$$\left\langle \frac{dE}{dx} \right\rangle \gg \left. \frac{dE}{dx} \right|_{\min}$$

Applications:

Tumor therapy

Possibility to precisely deposit dose at well defined depth by E_{beam} variation

Energy loss by electrons

Bethe-Bloch formula needs modifications

Incident and target electrons have same mass Scattering of identical indistinguishable particles

$$-\left\langle \frac{dE}{dx} \right\rangle_{\text{el.}} = K \frac{Z}{A} \frac{1}{\beta^2} \left[\ln \frac{m_e \beta^2 c^2 \gamma^2 T}{2I^2} + F(\gamma) \right]$$

[T: kinetic energy of electron]

Different energy loss for electrons and positrons at low energy as positrons are not Identical as electrons. Need different treatment

Bremsstrahlung

Bremsstrahlung arises if particles are accelerated in Coulomb field of nucleus

$$\frac{dE}{dx} = 4\alpha N_A \; \frac{z^2 Z^2}{A} \left(\frac{1}{4\pi\epsilon_0} \frac{e^2}{mc^2} \right)^2 E \; \ln \frac{183}{Z^{\frac{1}{3}}} \propto \frac{E}{m^2}$$

i.e. energy loss proportional to 1/m² → main relevance for electrons ...

... or ultra-relativistic muons

Consider electrons:

$$\frac{dE}{dx} = 4\alpha N_A \; \frac{Z^2}{A} r_e^2 \cdot E \; \ln \frac{183}{Z^{\frac{1}{3}}}$$

$$\frac{dE}{dx} = \frac{E}{X_0} \qquad \text{with} \quad X_0 = \frac{A}{4\alpha N_A \; Z^2 r_e^2 \; \ln \frac{183}{Z^{\frac{1}{3}}}}$$
 [Radiation length in g/cm²]

$$-E = E_0 e^{-x/X_0}$$

After passage of one X₀ electron has lost all but (1/e)th of its energy

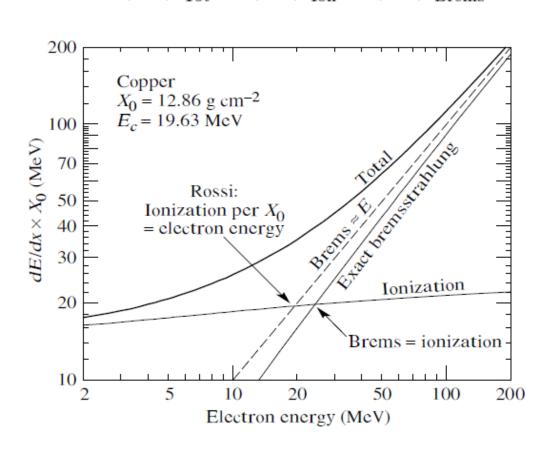
[i.e. 63%]

Bremsstrahlung- Critical Energy

Critical energy:

$$\frac{dE}{dx}(E_c)\bigg|_{\text{Brems}} = \frac{dE}{dx}(E_c)\bigg|_{\text{Ion}}$$

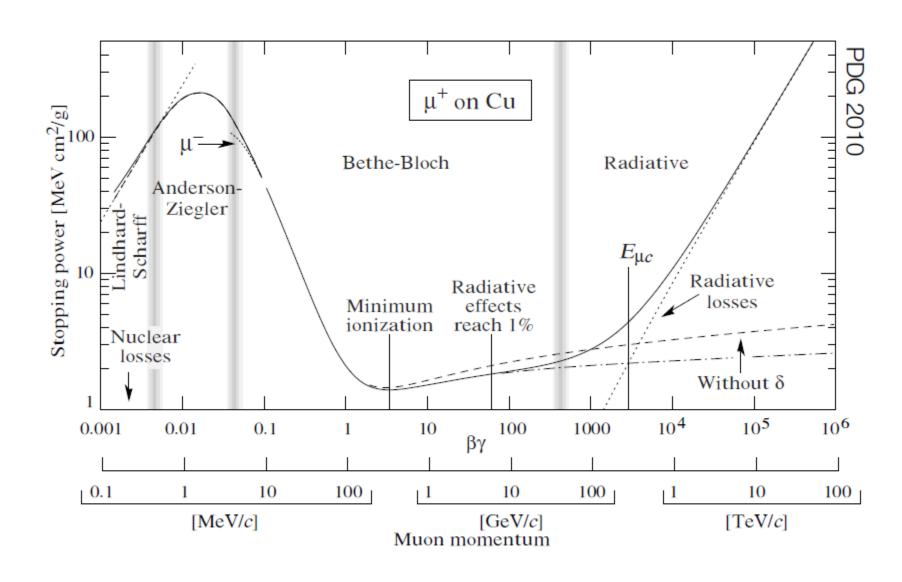
Approximation:


$$E_c^{\text{Gas}} = \frac{710 \text{ MeV}}{Z + 0.92}$$

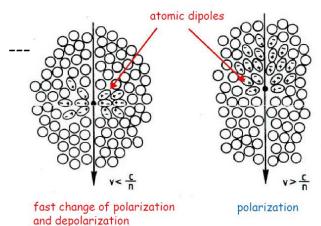
$$E_c^{\text{Sol/Liq}} = \frac{610 \text{ MeV}}{Z + 1.24}$$

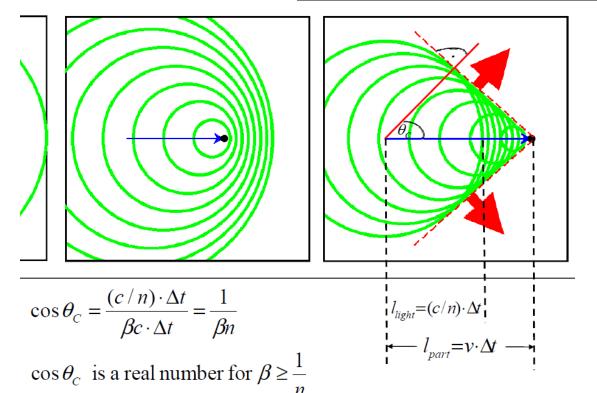
Example Copper:

$$E_c \approx 610/30 \text{ MeV} \approx 20 \text{ MeV}$$


$$\left(\frac{dE}{dx}\right)_{\text{Tot}} = \left(\frac{dE}{dx}\right)_{\text{Ion}} + \left(\frac{dE}{dx}\right)_{\text{Brems}}$$

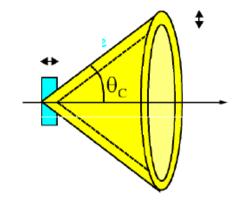
Total Energy loss of Electrons:




Total Energy Lass - Muons

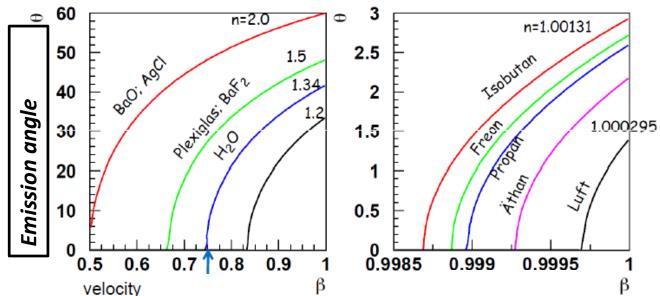
Cherenkov Radiation:

- The fast time dependent change of the polarisation of the medium can create observable Coherent effects ---Cherenkov radiation
- For v < c/n fast reduction of induced field in the medium
- For v > c/n propagation of EM wave in possible and observed



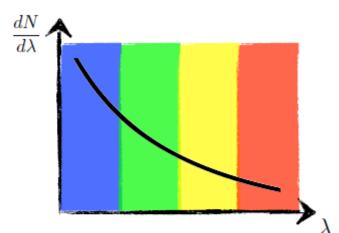
Cherenkov Radiation in various media

Emission angle $\theta_{\mathcal{C}}$ relative to direction of velocity depends only on particle velocity β .


threshold:
$$\beta_{thresh} = \frac{1}{n} \implies \text{ opening cone} : \theta_C \approx 0^\circ$$

max. opening cone: $\beta \approx 1 \implies \arccos \theta_C = \frac{1}{n}$

Corresponds to electron energies ~ 260 keV-> reactor


Cherenkov Radiation - Properties

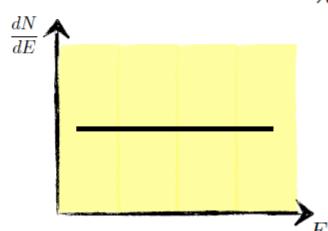
Number of emitted photons per unit length:

from
$$\boxed{4}$$

$$\frac{d^2N}{d\lambda dx} = \frac{2\pi\alpha z^2}{\lambda^2} \left(1 - \frac{1}{\beta^2 n^2(\lambda)} \right) = \frac{2\pi\alpha z^2}{\lambda^2} \sin^2\theta_C$$

Integrate over sensitivity range:
$$\frac{dN}{dx} = \int_{350~\rm nm}^{550~\rm nm} d\lambda \frac{d^2N}{d\lambda dx}$$

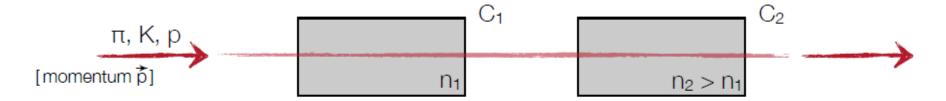
$$= 475~z^2 \sin^2\theta_C~\rm photons/cm$$



$$\frac{d^2N}{dEdx} = \frac{z^2\alpha}{\hbar c} \left(1 - \frac{1}{\beta^2 n^2(\lambda)} \right) = \frac{z^2\alpha}{\hbar c} \sin^2 \theta_C$$

$$\approx \text{const}$$

For single charged particle:


$$\frac{d^2N}{dEdx} = 370 \sin^2 \theta_C \text{ eV}^{-1} \text{ cm}^{-1}$$

Cherenkov Radiation- Application

Threshold detection:

Observation of Cherenkov radiation $\rightarrow \beta > \beta_{thr}$

Choose n₁, n₂ in such a way that for:

 n_2 : β_{π} , $\beta_{K} > 1/n_2$ and $\beta_{p} < 1/n_2$

 n_1 : $\beta_\pi > 1/n_1$ and $\beta_K, \, \beta_p < 1/n_1$

Light in C_1 and C_2 \longrightarrow identified pion

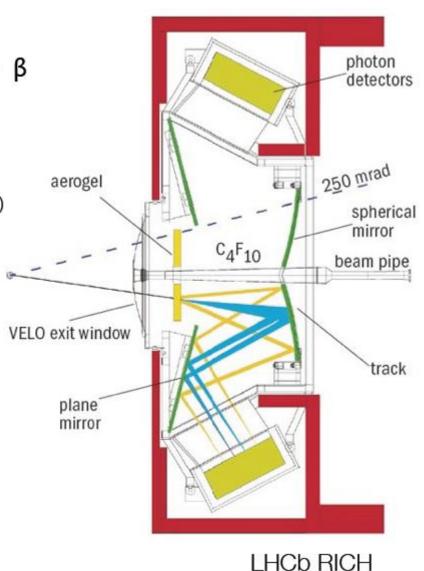
Light in C_2 and not in C_1 \longrightarrow identified kaon

Light neither in C_1 and C_2 \longrightarrow identified proton

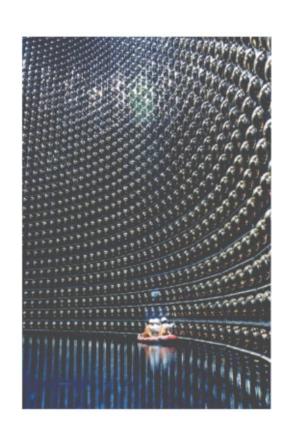
Cherenkov Radiation: Application

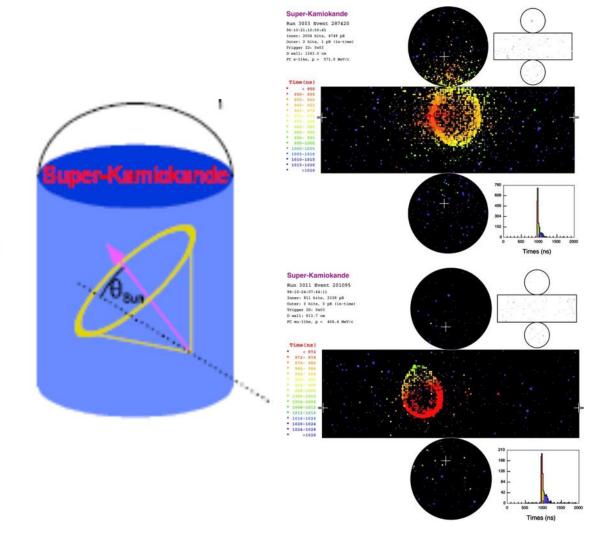
Measurement of Cherenkov angle:

Use medium with known refractive index n → β

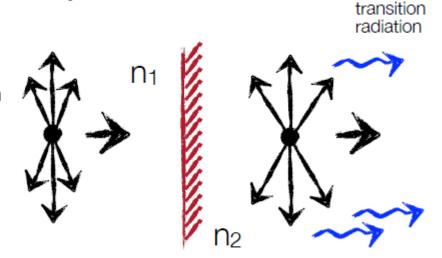

Principle of:

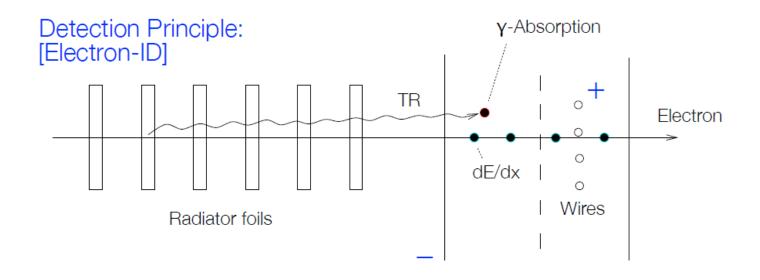
RICH (Ring Imaging Cherenkov Counter)


DIRC (Detection of Internally Reflected Cherenkov Light)

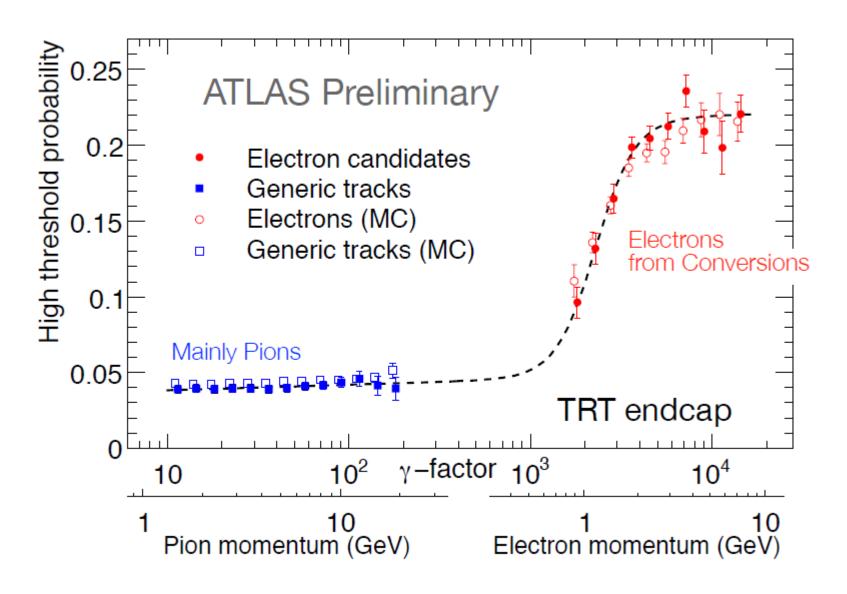

DISC (special DIRC; e.g. Panda)

Cherenkov Ring: Super-Kamiokande



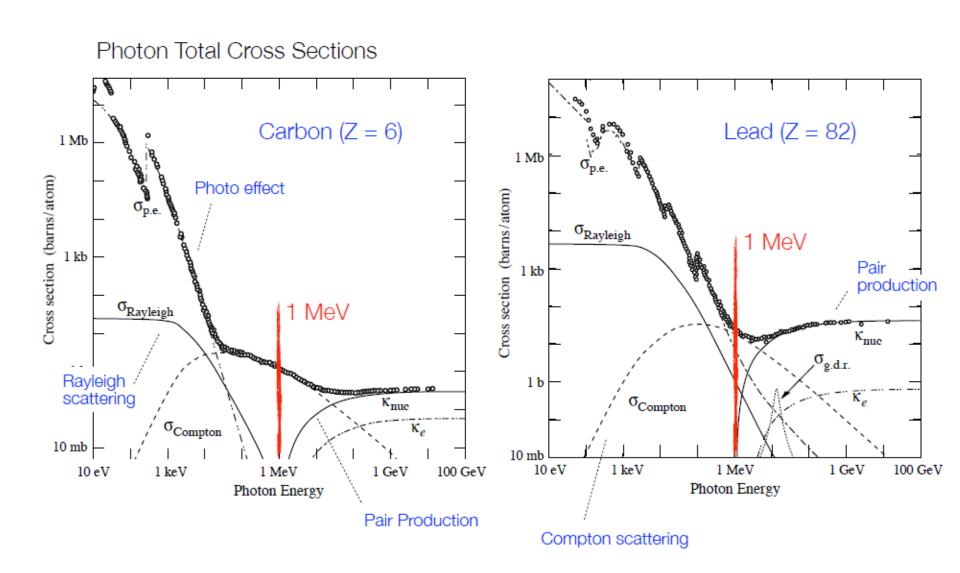


Transition Radiation Detector

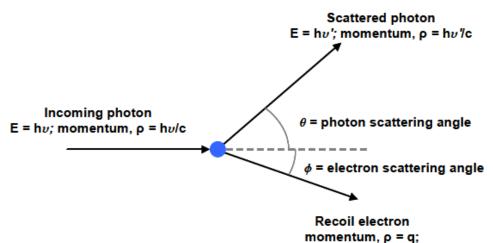

Transition radiation occurs if a relativistic Particle (large γ) passes the boundary between two media of different refraction indices.

This effect can be explained due to rearrangement of electric fields.

Transition Radiation: ATLAS Example


Interactions of photons with matter

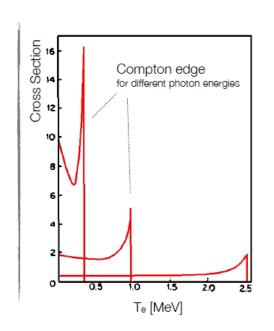
- Photons are far more penetrating than charged particles of similar energy.
- Photon interact with matter through the following processes:
 - Photoelectric effect.
 - Compton effect.
 - Pair production
- Interaction Probability:
 - linear attenuation coefficient, μ
 The probability of an interaction per unit distance traveled
 Dimensions of inverse length (eg. cm-1)


$$N = N_0 e^{-\mu X}$$

- The coefficient μ depends on photon energy and on the material being traversed.
- mass attenuation coefficient : $\mu/
 ho$
- The probability of an interaction per g cm⁻² of material traversed.
- Units of cm² g⁻¹

Interactions of photons with matter

Compton Scattering


$$h\nu' = h\nu \frac{1}{1 + \alpha(1 - \cos\theta)}$$

$$E_e = hv \frac{\alpha(1-\cos\theta)}{1+\alpha(1-\cos\theta)}$$

where
$$\alpha = \frac{h v}{m_0 c^2}$$

Maximum energy transfer

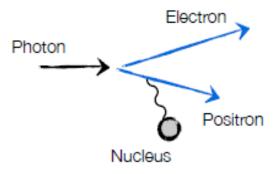
$$E_{e(max)} = hv \frac{2\alpha}{1 + 2\alpha}$$
and
$$hv_{min}' = hv \frac{1}{1 + 2\alpha}$$

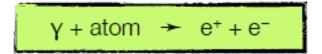
Photon Interactions: Pair Production

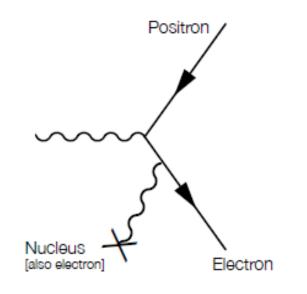
Energy threshold:

$$E_{\Upsilon} \ge 2m_ec^2(1+m_e/m_n)$$

2 x electron mass


Kinetic energy transferred to nucleus


Cross Section:


Rises above threshold, but reaches saturation for large E_{γ} [screening effect] ...

For E_γ » m_ec²:

$$\sigma_{\text{pair}} = 4 Z^2 \ \alpha r_e^2 \left(\frac{7}{9} \ln \frac{183}{Z^{\frac{1}{3}}} - \frac{1}{54} \right)$$
$$\approx 4 Z^2 \ \alpha r_e^2 \left(\frac{7}{9} \ln \frac{183}{Z^{\frac{1}{3}}} \right)$$


Scintillators:

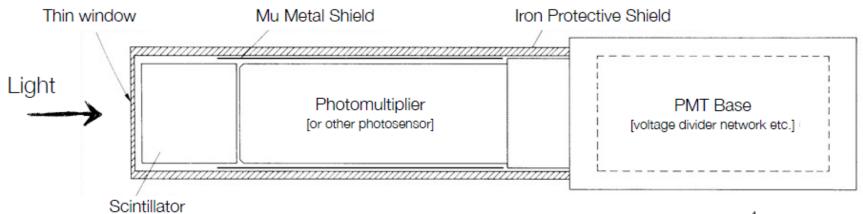
Principle:

dE/dx converted into visible light
Detection via photosensor
[e.g. photomultiplier, human eye ...]

Main Features:

Sensitivity to energy
Fast time response
Pulse shape discrimination

Requirements


High efficiency for conversion of excitation energy to fluorescent radiation

Transparency to its fluorescent radiation to allow transmission of light

Emission of light in a spectral range detectable for photosensors

Short decay time to allow fast response

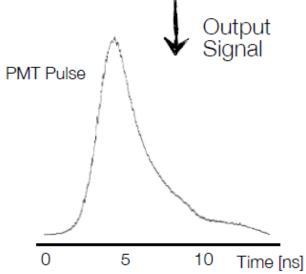
Scintillators: Basic setup

Scintillator Types:

Organic Scintillators

Inorganic Crystals

Gases


Photosensors

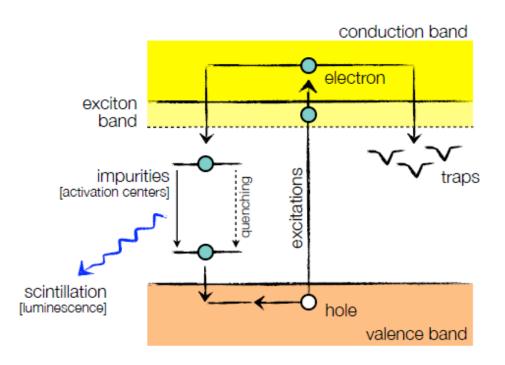
Photomultipliers
Micro-Channel Plates

Hybrid Photo Diodes

Visible Light Photon Counter

Silicon Photomultipliers

Scintillation Mechanism in Inorganic crystals:


Materials:

Sodium iodide (Nal) Cesium iodide (Csl) Barium fluoride (BaF₂)

...

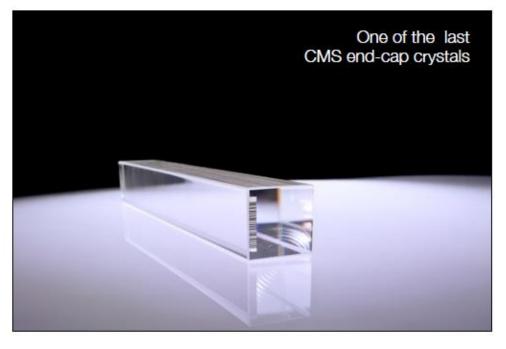
Mechanism:

Energy deposition by ionization Energy transfer to impurities Radiation of scintillation photons

Energy bands in impurity activated crystal showing excitation, luminescence, quenching and trapping

Time constants:

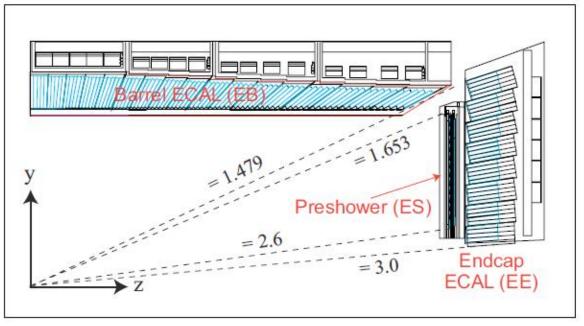

Fast: recombination from activation centers [ns ... µs]


Slow: recombination due to trapping [ms ... s]

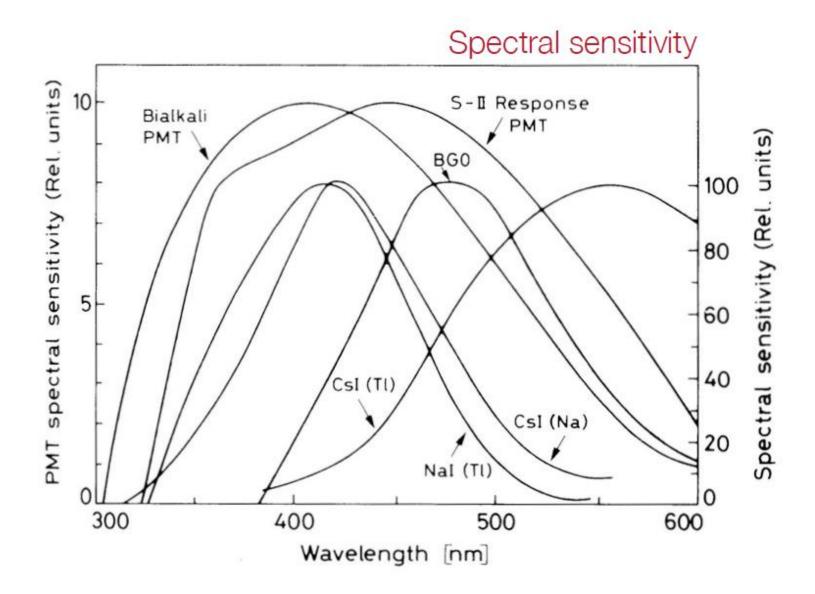
Inorganic crystals:

Example CMS
Electromagnetic Calorimeter

Application: CMS EM Calorimeter


Scintillator : PBW04 [Lead Tungsten]

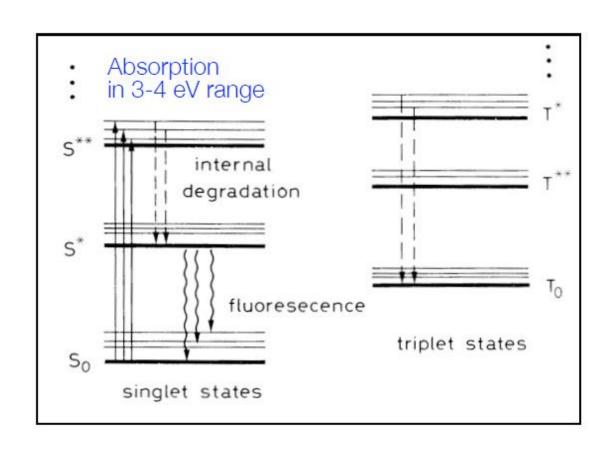
Photosensor: APDs [Avalanche Photodiodes]


Number of crystals: ~ 70000 Light output: 4.5 photons/MeV

Light output & PMT Sensitivity

Inorganic Scintillators - Properties

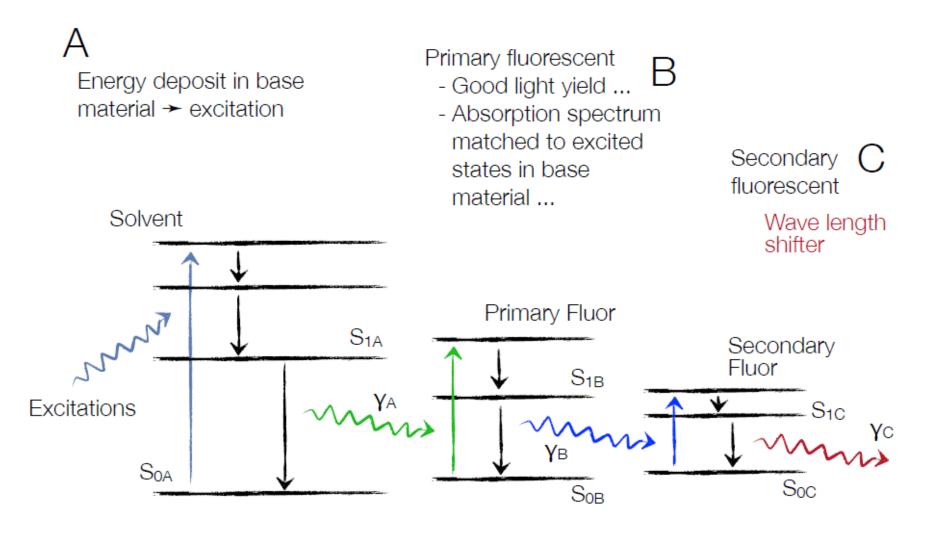
Scintillator material	Density [g/cm³]	Refractive Index	Wavelength [nm] for max. emission	Decay time constant [µs]	Photons/MeV
Nal	3.7	1.78	303	0.06	8·10 ⁴
Nal(TI)	3.7	1.85	410	0.25	4·10 ⁴
CsI(TI)	4.5	1.80	565	1.0	1.1·10 ⁴
Bi ₄ Ge ₃ O ₁₂	7.1	2.15	480	0.30	2.8·10 ³
CsF	4.1	1.48	390	0.003	2·10³
LSO	7.4	1.82	420	0.04	1.4·10 ⁴
PbWO ₄	8.3	1.82	420	0.006	2·10²
LHe	0.1	1.02	390	0.01/1.6	2·10²
LAr	1.4	1.29*	150	0.005/0.86	4·10 ⁴
LXe	3.1	1.60*	150	0.003/0.02	4·10 ⁴


Organic Scintillators:

Molecular states:

Singlet states
Triplet states

Fluorescence in UV range [~ 320 nm]


usage of wavelength shifters

Fluorescence : $S_1 \rightarrow S_0 [< 10^{-8} s]$

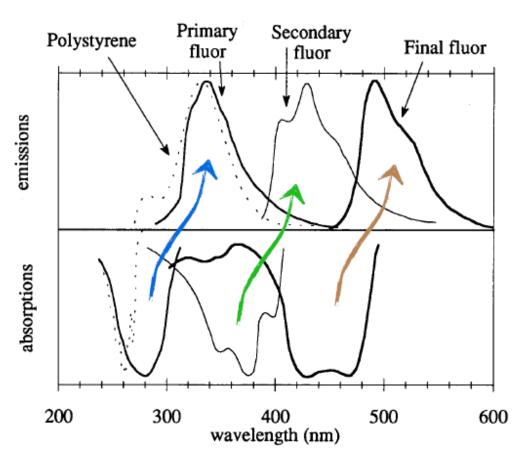
Phosphorescence: $T_0 \rightarrow S_0 > 10^{-4}$ s

Plastic & Liquid scintillators:

Wavelength shifting:

Principle:

Absorption of primary scintillation light


Re-emission at longer wavelength

Adapts light to spectral sensitivity of photosensor

Requirement:

Good transparency for emitted light

Schematics of wavelength shifting principle

Properties of Organic Scintillator:

Scintillator material	Density [g/cm³]	Refractive Index	Wavelength [nm] for max. emission	Decay time constant [ns]	Photons/MeV
Naphtalene	1.15	1.58	348	11	4·10³
Antracene	1.25	1.59	448	30	4·10 ⁴
p-Terphenyl	1.23	1.65	391	6-12	1.2·10 ⁴
NE102*	1.03	1.58	425	2.5	2.5·10 ⁴
NE104*	1.03	1.58	405	1.8	2.4·10 ⁴
NE110*	1.03	1.58	437	3.3	2.4·10 ⁴
NE111*	1.03	1.58	370	1.7	2.3·10 ⁴
BC400**	1.03	1.58	423	2.4	2.5·10 ²
BC428**	1.03	1.58	480	12.5	2.2·10 ⁴
BC443**	1.05	1.58	425	2.2	2.4·10 ⁴

^{*} Nuclear Enterprises, U.K. ** Bicron Corporation, USA

Inorganic vs. Organic Scintillator

Inorganic Scintillators

Advantages high light yield [typical; $\varepsilon_{sc} \approx 0.13$]

high density [e.g. PBWO₄: 8.3 g/cm³]

good energy resolution

Disadvantages complicated crystal growth

large temperature dependence

Expensive

Organic Scintillators

Advantages very fast

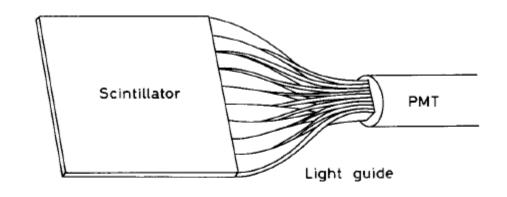
easily shaped

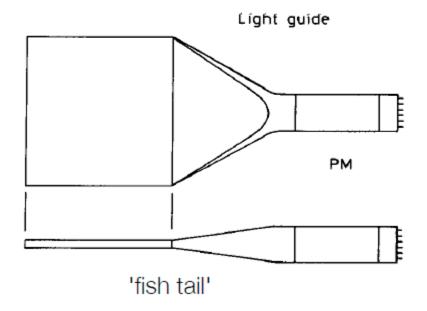
small temperature dependence

pulse shape discrimination possible

Disadvantages lower light yield [typical; $\varepsilon_{sc} \approx 0.03$]

radiation damage


Cheap


Transferring light from scintillator to photo detectors:

Scintillator light to be guided to photosensor

➤ Light guide [Plexiglas; optical fibers]

Light transfer by total internal reflection [maybe combined with wavelength shifting]

Photon Detection:

Purpose: Convert light into a detectable electronic signal

Principle: Use photo-electric effect to convert photons to

photo-electrons (p.e.)

Requirement:

High Photon Detection Efficiency (PDE) or Quantum Efficiency; Q.E. = N_{p.e.}/N_{photons}

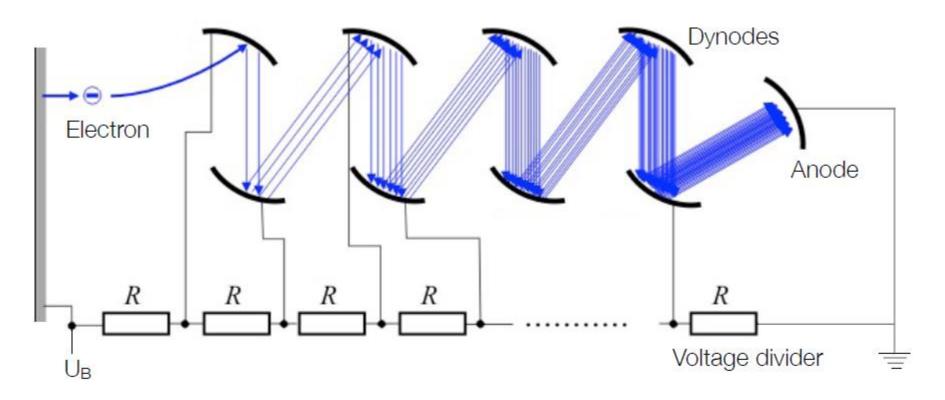
Available devices [Examples]:

Photomultipliers [PMT]
Micro Channel Plates [MCP]
Photo Diodes [PD]

HybridPhoto Diodes [HPD]
Visible Light Photon Counters [VLPC]
Silicon Photomultipliers [SIPM]

Photomultipliers

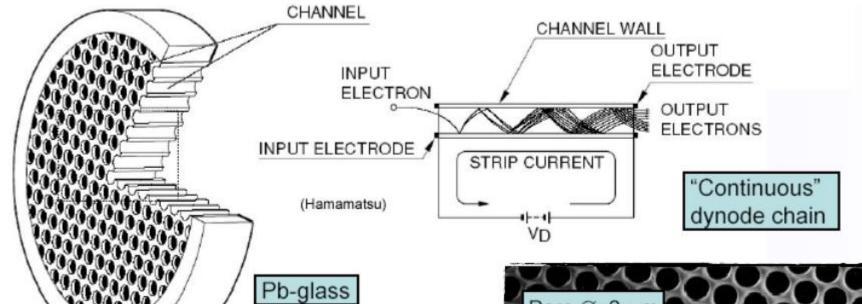
Principle:


Electron emission from photo cathode Secondary emission from dynodes; dynode gain: 3-50 [f(E)]

Typical PMT Gain: > 10⁶ [PMT can see single photons ...]

PMT Dynode gain:

Multiplication process:


Electrons accelerated toward dynode Further electrons produced → avalanche

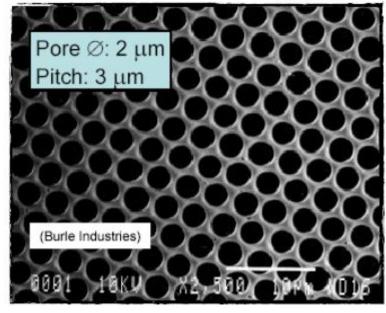
Secondary emission coefficient:

 $\delta = \#(e^- \text{produced})/\#(e^- \text{incoming})$

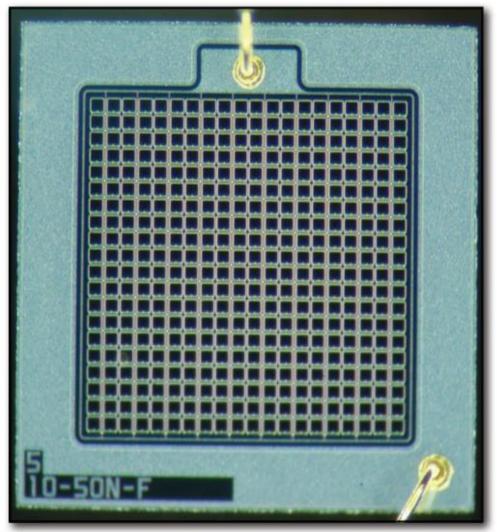
Typical:
$$\delta = 2 - 10$$

 $n = 8 - 15$ $\rightarrow G = \delta^n = 10^6 - 10^8$

Micro Channel Plate:

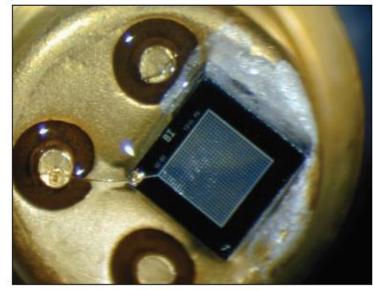

"2D Photomultiplier"

Gain: 5 · 104


Fast signal [time spread ~ 50 ps]

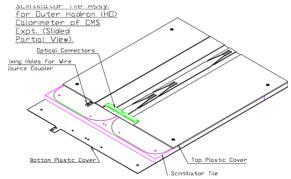
B-Field tolerant [up to 0.1T]

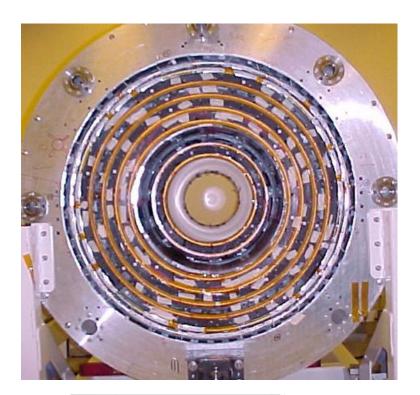
But: limited life time/rate capability

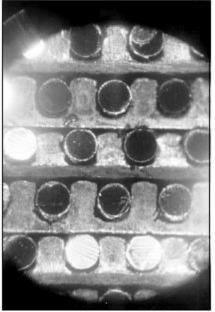


Silicon Photomultipliers:

HAMAMATSU MPPC 400Pixels


One of the first SiPM Pulsar, Moscow




Use of Scintillators:

- Time of flight detector
- Energy measurement (Calorimeter)
- Hodoscopes (Fiber trackers)
- Trigger system

