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Silicon Detector:

1. Photon spectroscopy with high energy resolution
2. Vertex detection with high spatial resolution
3. Energy measurement of charged particles [few MeV]

Main advantages:

() Possibility to produce small structures using micro-chip
technology; 10 pm precision; relatively low costs ...

(i) Comparably low energy deposition per detectable
electron-hole pair required ...

e.g. Silicon . 3.6 eV per electron-hole pair
lonization (LAr):  O(30 eV) for a single ion; see later
Scintillators ' O(100 V) depending on light vyield [typical 1-10%)]
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Basic Semiconductor Detector:

Requirement:
Large sensitive region ...

We know:
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n* and p* needed to

allow metallic contacts ...
[High doping = small depletion zone]

Bias voltage supplied
through series resistor ...



Energy Resolution:

Comparison
of energy resolutions ...

Scintillator [Nal(T1)): 1 MeV photon; o/E = 2%; AE/E = 5%
[Ni = 40000 photons/MeV x n x Q.E.; n =0.2, Q.E. = 0.25; o/E = 1//N]

Semiconductor [Si]: 1 MeV photon; o/E = 0.06%; AE/E = 0.15%
[Ni = 300000 e/h-pairs/MeV; n = 1, Q.E. = 1; F=0.1 o/E = |[F/Ni]

Energy resolution of a semiconductor detector
can be better by a factor 25 to 30.

This is indeed observed:
[for Ey = 1.33 MeV]

Ge(Li) Counter: Resolution of 0.15% possible (at ~ 1 MeV)
Nal(Tl) Detector: Resolution of about 6% (at ~ 1 MeV)



Events per Channel

Energy Resolution:
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Position sensitive detector:

Motivation:
Jet 2 Jet 3
b-Quark tagging & life time measurements
via secondary vertex finding ... Jet 1
e.g.: pp — tt+ X [Tevatron] =
— bW TW ™ L
1 S et
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. Vv CDF top-pair event
Thus: [Miop = 170 = 10 GeV]

To measure lifetime in picosecond regime
one needs spacial resolution of the order of 5 - 30 pm ...



Position Sensitive Detector:

Principle:

Segmentation
into strips, pads, pixels ...

Typical parameters:

Thickness: 150 - 500 pm
Strip separation (pitch): 20 - 150 pm

Resolution: 5 - 40 ym (pitch//12)

Charge collection: 20 ns
Charge integration: 120 ns

Operation voltage: 160 V

Output signal:
Total charge: Qout ~ 4 fC

Al 15 pm -U Signal
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Average energy loss of MIP: 300 eV/um; Si: 3.6 eV/pair.

Thus 80 electron-hole pairs per pm;
300 pm thickness - 25000 pairs/MIP

1

Schematics of
Silicon Strip Detector

[from 1983]

High resistive n-type silicon
onto which p™ diode strips with
aluminum contacts are implanted

300 pm



Double sided micro-strip detector:

Next step:
Double sided

micro-strip detectors ...

N* strips on one side

p* strips on other

Yields high spatial

side

resolution

in both x and y direction ...

Schematics of a double

But:

sided micro-strip detector

Strips need insulation to avoid that positive
space charge attracts electrons from n-layer
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Closeup of of n* side of
double sided micro-strip detector

Need blocking electrodes
to separate n* strips ...



Position Sensitive Detectors:

Pixel detectors:

Like micro-strips, but 2-dim. segmentation ...

Advantage:

As for micro-strips 2-dim. information,
but higher occupancy allowed;

Lower noise due to lower capacitance ...

Disadvantage:

Huge number of readout channels;
Complicated technology ("bump bonding")
Requires sophisticated readout architecture ...
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Gas Detectors:-Basics

Schematic Principle

Particle
of gas detectors !

Drifting charges
due to electric field
Gas

e Primary lonization
e Secondary lonization (due to d-electrons)

Anode wire or plane



Gas Detectors:

lonization mode:

full charge collection
no multiplication; gain = 1

Proportional mode:

multiplication of ionization

signal proportional to ionization
measurement of d&/dx

secondary avalanches need quenching;
gain = 10% - 10°

Limited proportional mode:
[saturated, streamer]

strong photoemission
requires strong quenchers or pulsed HY;
gain = 10"

Geiger mode:

massive photoemission;
full length of the anode wire affected,;
discharge stopped by HV cut

Number of lons collected
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Single Wire Proportional counter
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KGF Proportional counters




G. Charpak
Nobel Prize 1992

Multiwire Proportional Chambers

Schematic setup:

cathode plane

d
A —
o o/o O O O O O O
B "?" anode wire
W
Parameters: Features:
d = 2-4mm Tracking of charged particles
e = 20-25um Some PID capabilities via dE/dx
L = 3-6mm L arge area coverage
particle track Uo = several kV High rate capabilities

Total area: O(m?)



Multiwire Proportional Chambers
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MWPC:

substantial functionality improvement
due to cathode strips/pads ...
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Micro-strip Gas Chambers: (MSGC)

Can one avoid wires? Schematics of MSGC

Anode realized via microstructures field lines

on dielectrics ... high field directly above anode

Simple construction (today) ions drift only 100 pm; yields low dead time ...
Enhanced stability & flexibility
Improved rate capabilities cathode

First MSGCs developed in 1990ies ...

Problems: charging of isolation structure
[ = time-dependsant gain; sparks, anode destruction]

| drift cathode

cathode T
-50 pm] 3mm gas gap
’-— 200 pm ——I ! anode [Ar+vapour]

E-field

BRAAAA

\ cathode anods
backing electrode

_{ -5 pm]




MSGC =2 GEM

_ Micromegas

MSGCs prone to aging problems ... / detector

Solution: intermediate grid ... G ~10°
3 mm 1 kV/icm

e.g.: Micromegas micromesh oy
GEM detectors [Sauli, 1997] 100 M readout strips 40 KkV/em :

| 1 M1 rm1 r1 r 1 11 1 1 [ 1 1

i |
,/pa ricle

Micromegas: | ]
Fine cathode mesh collects ions I I
still fast; no wires ...

GEM (Gas Electron Multiplier):
Thin insulating kapton foil
coated with metal film ...
Contains chemically produced
holes [100-200 pm]

Electrons are guided by high
electric drift field of GEMSs ...
Avalanche production ...

Electrons drift to anods
GEM collects ions

readout board

Schematics
of GEM detector




GEM foils:

Gas Electron Multiplier - a-»> - - o e
_ Schematics

of a GEM foil
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+2x 5-18 ¥m Copper

Micro photo
of a GEM foil




Drift Chambers:

Simple Drift Chamber Setup

But: hera, uniform drift field reguines
high-voltages in case of large arsa detectors
Anode wire
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Time Projection Chambers: (TPC)

Electronic 'bubble chamber’

Full 3D reconstruction ...

xy : from wires and pads of MWPC ...
z : from drift time measurement

Momentum measurement ...
space point measurement
plus B field ...

Energy measurement ...
via dE/dx ...

TPC setup:

(mostly) cylindrical detector

central HV cathode
MWPCs at end-caps of cylinder

BlltoE = Lorentzangle=0

Charge transport :

Electrons drift to end-caps
Drift distance several meters

Continuous sampling of induced
charges in MWPC

TPC principle
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readout plane

cathode pads

anode wires
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TPC:

. particle track
\H -

gating plane
cathode plane =

anode plana
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Advantages:

Complete track within one detector
yields good momentum resolution

Relative few, short wires (MWPC only)
Good particle ID via dE/dx

Drift parallel to B suppresses transverse
diffusion by factors 10 to 100

Challenges:

Long drift time; limited rate capability
[attachment, diffusion ...]

Large volume [precision]
Large voltages [discharges]
Large data volume ...

Extreme load at high luminosity; gating
grid opened for triggered events only ...

Typical resolution:

z: mm; x: 150 - 300 pm; y: mm
dE/dx: 5 - 10%



ALICE TPC:

ALICE TPC:

Length: 5 meter
Radius: 2.5 meter
Gas volume: 88 m3

Total drift time: 92 ps
High voltage: 100 kV

End-cap detectors: 32 m?
Readout pads: 557568
159 samples radially
1000 samples in time

Gas: Ne/CO2/N2 (90-10-5)
Low diffusion (cold gas)
Gain: > 104

Diffusion: ot = 250 pm
Resolution: o = 0.2 mm
Op/p~1%p; € ~97%
Ode/ax/(dE/dX) ~ 6%
Magnetic field: 0.5 T

Pad size: 5x7.5 mm? (inner) _ , . .
6x15 mm? (outer) Material: Cylinder build from composite

material of airline industry (Xo= ~ 3%)

Temperature control: 0.1 K
[also resistors .. ]



ALICE TPC:

Simulated hea
ion collision iNALICE TP




Calorimeter:

Calorimeter:
Detector for energy measurement via total absorption of particles ...

Also: most calorimeters are position sensitive to measure energy depositions
depending on their location ...

Principle of operation:

Incoming particle initiates particle shower ...
Shower Composition and shower dimensions depend on Schematic of
particle type and detector material ... calorimeter principle
Energy deposited in form of: heat, ionization,
excitation of atoms, Cherenkov light ...

Different calorimeter types use different kinds of
these signals to measure total energy ...

particle cascade (shower)

incident particle
Important:

Signal ~ total deposited energy

[Proportionality factor determined by calibration]



Calorimeter:

Energy vs. momentum measurement:

: o 1 a.
Calorimeter:  — ~ —= Gas detector: -2 ~ p
[see below] E vE [see above] P
e.g. ATLAS: e.g. ATLAS:
g_‘r%ﬂ Eﬁa-lt}_”l-pt

E VE P
i.e. o5/E = 1% @ 100 GeV .e. op/p = 5% @ 100 GeV

At very high energies one has to switch to calorimeters because their
resolution improves while those of a magnetic spectrometer decreases with E ...

Shower depth:
Calorimeter: L ~1In EE Shower depth nearly energy independent
[see below] ¢ .e. calorimeters can be compact ...

[Ec: critical energy]
Compare with magnetic spectrometer: 7x/p ~ /1.2
Detector size has to grow quadratically to maintain resolution



Development of Shower

ABSORBER

Electromagnetic Shower - o g

Hadronic Shower w - =




Sampling Calorimeter

Scintillators as active layer;
signal readout via photo multipliers

Absorber Scintillator

NS4 Light guide

Photo detector

Charge ampilifier

y Ay Absorber as
y electrodes

Active medium: LAr; absorber
embedded in liquid serve as electrods

Possible setups

Scintillator

Scintillators as active (blue light)
layer; wave length shifter &
to convert light <

lonization chambers
between absorber
plates



Typical HEP Calorimeter:

Schematic of a

Typical Calorimeter: two components ... typical HEP calorimeter
Electromagnetic (EM) +
Hadronic section (Had) ... )
Electrons
Different setups chosen for Photons
optimal energy resolution ... Had
Taus
But: Hadrons
Hadronic energy measured in Had

both parts of calorimeter ...

Needs careful consideration of
different response ... Jets




Hadronic Energy Resolution:

Energy resolution:

e.g. inhomogeneities
shower leakage

%

e.g. electronic noise
sampling fraction variations

A
® b & —

\/E

= Q.

Fluctuations:
Sampling fluctuations
Leakage fluctuations

Fluctuations of electromagnetic
fraction

Nuclear excitations, fission,
binding energy fluctuations ...

Heauvily ionizing particles

Typical:

A: 0.5 = 1.0 [Recora:0.35]
B: 0.03-0.05
C: few %



Path of the signal from Detection to Acquisition

Most front-ends follow a similar architecture

« Very small signals (fC) -> need amplification
« Measurement of amplitude (ADCs)
« Thousands to millions of channels
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