

George Gamow (1904 - 1968)

### Big Bang Nucleosynthesis

$$\begin{array}{rrrr} n & \leftrightarrow & p + e^- + \bar{\nu}_e \\ n + e^+ & \leftrightarrow & p + \bar{\nu}_e \\ n + \nu_e & \leftrightarrow & p + e^- \,. \end{array}$$

Neutrons-protons inter-converting processes

At the equilibrium:

$$\left(\frac{n_n}{n_p}\right) \simeq \left(\frac{n_n}{n_p}\right)_{\text{eq}} \simeq e^{-\frac{Q_n}{k_B T}} \quad Q_n = (m_n - m_p) c^2 \simeq 1.29 \,\text{MeV}$$

Equilibrium  
holds until 
$$\Gamma_{n\leftrightarrow p} \simeq G_F^2 T^5 \gtrsim H \implies T \gtrsim T_{\rm fr} = \frac{\sqrt{2.4}}{g_R^{1/4}} \left(\frac{
m sec}{t_{\rm fr}}\right)^{1/2} 
m MeV \simeq 0.85 
m MeV$$
Freeze-out  
temperature

At the freeze-out:

neutrons

$$\frac{n_n}{n_p}(T_{\rm fr}) = e^{-\frac{Q_n}{T_{\rm fr}}} \simeq e^{-\frac{1.29}{0.85}} \simeq 0.22 \,, \qquad t_{\rm fr} \simeq 1.0 \,\rm sec$$

 $t_{\rm nuc} \simeq 310 \, s$  . After the freeze-out neutrons start to decay prior to nucleosynhesis at Life time of  $\tau_n \simeq 885 \,\mathrm{s.}$ 

$$\frac{(n_n/n_p)_{\text{nuc}}}{(n_n/n_p)_{\text{fr}}} = e^{-\frac{t_{\text{nuc}}}{\tau}} = e^{-\frac{310}{885}} \simeq 0.7 \Longrightarrow (n_n/n_p)_{\text{nuc}} \simeq 0.154. \Longrightarrow Y_p = 2 \frac{(n_n/n_p)_{\text{nuc}}}{1 + (n_n/n_p)_{\text{nuc}}} \simeq 0.267.$$

### **Big Bang Nucleosynthesis**

n

р

#### Relevant nuclear processes

1) 
$$p + n \leftrightarrow D + \gamma$$
  
2)  $D + n \leftrightarrow T + \gamma$   
3)  ${}^{3}\text{He} + n \leftrightarrow {}^{4}\text{He} + \gamma$   
4)  ${}^{6}\text{Li} + n \leftrightarrow {}^{7}\text{Li} + \gamma$   
5)  ${}^{3}\text{He} + n \leftrightarrow T + p$   
6)  ${}^{7}\text{Be} + n \leftrightarrow {}^{7}\text{Li} + p$   
7)  ${}^{7}\text{Li} + n \leftrightarrow {}^{3}\text{He} + {}^{4}\text{He}$   
8)  ${}^{7}\text{Be} + n \leftrightarrow {}^{4}\text{He} + {}^{4}\text{He}$   
9)  $D + p \leftrightarrow {}^{3}\text{He} + \gamma$   
10)  $T + p \leftrightarrow {}^{4}\text{He} + \gamma$   
11)  ${}^{6}\text{Li} + p \leftrightarrow {}^{7}\text{Be} + \gamma$   
12)  ${}^{7}\text{Li} + p \leftrightarrow {}^{4}\text{He} + {}^{4}\text{He}$   
13)  $D + {}^{4}\text{He} \leftrightarrow {}^{6}\text{Li} + \gamma$   
14)  $T + {}^{4}\text{He} \leftrightarrow {}^{7}\text{Be} + \gamma$   
15)  ${}^{3}\text{He} + {}^{4}\text{He} \leftrightarrow {}^{7}\text{Be} + \gamma$   
16)  $D + D \leftrightarrow {}^{3}\text{He} + n$   
17)  $D + D \leftrightarrow {}^{3}\text{He} + n$   
17)  $D + D \leftrightarrow {}^{4}\text{He} + p$   
18)  $D + T \leftrightarrow {}^{4}\text{He} + n$   
20)  ${}^{3}\text{He} + {}^{3}\text{He} \leftrightarrow {}^{4}\text{He} + n$   
20)  ${}^{3}\text{He} + {}^{3}\text{He} \leftrightarrow {}^{4}\text{He} + 4\text{He} + 22$ )  $D + {}^{7}\text{Be} \leftrightarrow {}^{4}\text{He} + {}^{4}\text{He} + 4$ 

Deuterium bottleneck: No other element can Form before Deuterium. This delays the synthesis of He-4

### **Big Bang nucleosynthesis+CMB**



(PDB hep-ph/0108182)

$$\gamma_{B0} \simeq 273.5 \,\Omega_{B0} h^2 \times 10^{-10}$$

 $\Rightarrow \eta_{B0}^{(CMB)} = (6.08 \pm 0.06) \times 10^{-10}$ 

Using this measurement of n<sub>BO</sub> from CMB from <sup>4</sup>He abundance (Y) one finds:

$$N_v(t_f = 1s) = 2.9 \pm 0.2$$

And from Deuterium abundance:

$$N_v(t_{nuc} \simeq 300s) = 2.8 \pm 0.3$$

This shows that  $T_{RH} \gg T_v^{dec} \sim 1$  MeV and again NO DARK RADIATION

### Cosmic ingredients

#### (Hu, Dodelson, astro-ph/0110414)



#### Number of ultra-relativistic degrees of freedom vs. T

| Т                                                                                      | $\mathbf{g}_{\mathbf{R}}$ | Particle content                    |
|----------------------------------------------------------------------------------------|---------------------------|-------------------------------------|
| $m_ec^2/2\simeq 0.25{\rm MeV}\gg T\geq T_0$                                            | 3.36                      | $\gamma$ + 3 massless $\nu's$       |
| $m_\mu  c^2/2 \simeq 50  {\rm MeV} \gg T \gg m_e  c^2/2$                               | 43/4 = 10.75              | $\ldots + e^{\pm}$                  |
| $m_\pi  c^2/2 \simeq 75  \mathrm{MeV} \gg T \gg m_\mu  c^2/2$                          | 57/4 = 14.25              | $\ldots + \mu^{\pm}$                |
| $T_{\rm qh} \simeq 150 {\rm MeV} \gg T \gg m_\pi  c^2/2$                               | 69/4 = 17.25              | $\ldots + \pi^0, \pi^{\pm}$         |
| $m_{	au}  c^2/2 \gtrsim m_{ m c}  c^2/2 \simeq 0.65  { m GeV} \gg T \gtrsim T_{ m qh}$ | 61.75                     | $\ldots$ + u,d,s quarks + 8 gluons  |
| $m_{ m b}c^2/2\simeq 2{ m GeV}\gg T\gg m_{	au}c^2/2$                                   | 75.75                     | $\ldots + \tau^{\pm} + c$ quark     |
| $m_{W,Z,H^0} c^2/2 \simeq 40 { m GeV} \gg T \gg m_{ m b} c^2/2$                        | 86.25                     | $\ldots + b$ quark                  |
| $m_{ m t}  c^2/2 \simeq 90  { m GeV} \gg T \gg m_{W,Z,H^0}  c^2/2$                     | 96.25                     | $\ldots + W^{\pm}, Z^0, H^0$ bosons |
| $T \gg m_{ m t}  c^2/2$                                                                | 106.75                    | $\ldots + $ top quark               |

TABLE 13.1 Dependence of  $g_R$  on temperature in the standard model.

### Cosmological puzzles



It is reasonable to think that the same extension of the SM necessary to explain neutrino masses and mixing might also address the cosmological puzzles:

- Leptogenesis,
- RH neutrino as Dark matter

## The baryon asymmetry of the Universe

#### (Hu, Dodelson, astro-ph/0110414)

(Planck 2015, 1502.10589)



 $\Omega_{B0}h^2 = 0.02230 \pm 0.00014$ 

$$\eta_{B0} \equiv \frac{n_{B0} - \overline{n}_{B0}}{n_{\gamma 0}} \simeq \frac{n_{B0}}{n_{\gamma 0}} \simeq 273.5 \Omega_{B0} h^2 \times 10^{-10} = (6.10 \pm 0.04) \times 10^{-10}$$

• Consistent with (older) BBN determination but more precise and accurate

#### Matter-antimatter asymmetry of the Universe

- A relic abundance of matter and antimatter would be incredibly small. Something should have segregated them prior to annihilations
- Symmetric Universe with matter- anti matter domains ?
   Excluded by CMB + cosmic rays
- Pre-existing ? It conflicts with inflation ! (Dolgov '97)
- dynamical generation at the end or after inflation is necessary (baryogenesis) (Sakharov '67)
- A Standard Model baryogenesis ?  $\eta_B^{SM} <<<\eta_B^{CMB}$

# **Models of Baryogenesis**

•

From phase transitions:

- ELECTROWEAK BARYOGENESIS (EWBG)

- \* in the SM
- \* in the MSSM
- \* in the nMSSM
- \* in the NMSSM
- \* in the 2 Higgs model
- Affleck-Dine:
- at preheating
  - Q-balls

- From Black Hole evaporation
- Spontaneous Baryogenesis

- From heavy particle decays:
  - GUT Baryogenesis
  - LEPTOGENESIS

# **Baryogenesis in the SM ?**

All 3 Sakharov conditions are fulfilled in the SM:

 baryon number violation if T ~ 100 GeV,
 CP violation in the quark CKM matrix,
 departure from thermal equilibrium (an arrow of time) from the expansion of the Universe

### **Baryon Number Violation at finite T**

('t Hooft '76)

Even though at T= 0 baryon number violating processes are inhibited, at finite T:

$$\Gamma(\Delta B \neq 0) \propto T^4 \exp\left[-\kappa \frac{v(T)}{T}\right]$$

 $v \equiv \langle \Phi \rangle = \begin{cases} 0 \text{ for } \mathbf{T} \geq \mathbf{T_c} \text{ (unbroken phase)} \\ \mathbf{v}(\mathbf{T_c}) \text{ for } \mathbf{T} \leq \mathbf{T_c} \text{ (broken phase)} \end{cases}$ 

- Baryon number violating processes are unsuppressed at T  $\leq$  T<sub>c</sub>  $\approx$  100 GeV
  - Anomalous processes violate lepton number as well but preserve B-L !

#### There can be enough departure from thermal equilibrium ?

1<sup>st</sup> or 2<sup>nd</sup> order PT?



# **EWBG in the SM**

#### If the EW phase transition (PT) is 1st order ⇒ **broken phase bubbles nucleate**



In the SM the ratio  $v_c/T_c$  is directly related to the Higgs mass and only for  $M_h < 40 \text{ GeV}$  one can have a strong PT

 $\Rightarrow$  EW baryogenesis in the SM is ruled out (also not enough CP)

# ⇒ New Physics is needed!

# **EWBG in the MSSM**

(Carena, Quiros, Wagner '98)

 Additional bosonic degrees of freedom (dominantly the light stop contribution) can make the EW phase transition more strongly first order if :



•With the discovery of Higgs boson with a mass m<sub>H</sub>~126 GeV the EWBG in MSSM is basically dead (D.Curtin et al.arXiv:1203.2932) though very ad hoc loopholes have been found

## **EWBG in the nMSSM**

(Menon, Morissey, Wagner'04; Balazs, Carena, Freitas, Wagner et al. `07)

- The `μ-problem' in the MSSM can be solved introducing a singlet chiral superfield ⇒ the mass of the (CP-even) Higgs boson responsible for EWSB can be easily much higher than the Higgs mass
   Discrete symmetries have to be imposed to solve the *domain wall problem*,
   Two popular options :
  - `Next-to-MSSM' (NMSSM) based on  $Z_{\rm 3}$
  - `nearly-MSSM' (nMSSM) based on  $Z_5$  or  $Z_7$
- The nMSSM is interesting for EWBG because strong first order phase transition does not require too light Higgs and stop masses;
- However chargino and Higgs mass parameters are required to be in the range testable at LHC and ILC
- Constraints from EDM's are still present but weaker than in the MSSM; new experiments will improve current upper bound on the electron EDM and in many scenarios non zero value is expected
- At the same time neutralino is the LSP and can be the Dark Matter for masses about 30-45 GeV

# Is EWBG in general still alive ?

(See J.Cline 1704.08911 "Is EWBG dead?", for a review on the status of EWBG)

#### 2 attitudes:

- **Optimistic**: EWBG in the MSSM has strong constraints but these can be relaxed within other frameworks:
  - in the NMSSM

(Pietroni '92, Davies et al. '96, Huber and Schmidt '01)

- in the nMSSM

(Wagner et al. '04)

- in left-right symmetric models at B-L symmetry breaking (Mohapatra and Zhang '92)

- all these models also start to be strongly constrained!

- adding a scalar singlet (Choi, Volkas '93, Espinosa et al'15, J.Cline et al '17.)
- Pessimistic: Still viable models start to be too *ad hoc* and we need some other mechanism: LEPTOGENESIS!