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• A.  Introduction or review of some needed 
mathematics. e.g. linear systems and Fourier 
transforms. 

• B. Examples of some common electronics and 
mechanical systems and how to solve them. 

• C. Introduction to noise and related phenomena. 

Plan of this lecture

I have left a lot for you to investigate on your own. 



This work combines three separate disciplines 
It is a bit heavy and requires several sittings. 

The goal is to present it in an informal way so 
that the connections are obvious and can be 
later explored in a deeper way.  

1) Understanding and modeling physical 
systems such as electronics or mechanical 
systems.    

2) Elementary Mathematical analysis and 
Fourier transforms. 

3) Some elements of probability and statistics.   



• There are many practical mechanical or electrical systems in 
which the output is linearly related to the input excitation.  

• If the excitation is multiplied by a constant then the response 
is also.  (homogeneity).   If Vi ->a Vi   then Vo-> a Vo

• If there are multiple sources of excitation then the response 
due to each one adds linearly in the total response. 
(superposition).  If Vi -> V1+V2 then Vo->V1+V2

• The frequency of the response will be the same as the 
frequency of the excitation. This property allows analysis of 
such systems using Laplace or Fourier transforms. 

Input:  Vi Output: Vo

Linear  
system



Impulse response and transfer functions. 
If input pulse is a delta function then the output is called the impulse response
Vi (t) = δ (t)  then Vo(t) = h(t)
The transfer fuction of a physical device (am amplifier or shaper) is the 
Fourier transform of this impulse response. 

H (ω ) = e− iωth(t)dt           and     h(t) =
−∞

∞

∫
1

2π
eiωth(t)dt  

−∞

∞

∫
This is the engineering asymmetric convention for Fourier transforms.  Often physicists 

and mathematicians will use 1/ 2π   as the normalization for both sides (symmetric).  

Dirac's delta function and its Fourier transform

δ (t)=0 if t ≠ 0 and 

δ (t)dt = 1  and  D(ω ) = δ (t)e− iωt
−∞

∞

∫
−∞

∞

∫ dt = 1

For the inverse transform δ (t)= 1
2π

eiωt
−∞

∞

∫ dω



Properties of the Fourier transform of a real function
Let g(t) be a real function.  

G(ω ) = g(t)e− iωt dt
−∞

∞

∫               G*(ω ) = g(t)e− i(−ω )t dt
−∞

∞

∫
Therefore G*(ω ) = G(−ω )... is Hermitian 
Examine the symmetry of g(t) based on G(ω ) = G eiArg(G )

g(t) = 1
2π

G(ω )e+ iωt dω
−∞

∞

∫

g(t) = 1
2π

( G(ω )e+ iωt dω
0

∞

∫ + G(ω )e+ iωt dω
−∞

0

∫ )

g(t) = 1
2π

( G(ω )e+ iωt dω
0

∞

∫ + G(−ω )e− iωt (−dω
∞

0

∫ ))

g(t) = 1
2π

( G(ω )e+ iωt dω
0

∞

∫ + G*(ω )e− iωt dω
0

∞

∫ )

g(t) = 1
2π

(G(ω )e+ iωt +G*(ω )e− iωt )dω
0

∞

∫

g(t) = 1
2π

G(ω ) 2cos(ωt + Arg(G(ω )))dω
0

∞

∫
Notice that if G(ω ) is a real function then g(t) is a symmetric function.
g(t) = g(-t)  iff G(ω ) is real. 

This property allows us to 
only display the transform for 
positive frequencies.  

G(ω ) 2  is called the power spectrum.
if g(t) is in volts and we imagine it is applied 

across 1 Ω resistance, then G(ω ) 2  is the amount
of power per unit frequency



Some more properties
The following properties allow us to transform differential equations
that govern linear systems into algebraic problems in frequency space.  

Parseval's Theorem: g(t)2 dt = 1
2π−∞

∞

∫ G(ω ) 2 dω
−∞

∞

∫
Time shift:  g(t - t0 ) F⎯ →⎯ e− iωt0G(ω )
Differentiation:  g '(t) F⎯ →⎯ iωG(ω )

Integration: g(τ )dτ F⎯ →⎯
−∞

t

∫
1
iω
G(ω )+πG(0)δ (ω )

Linearity: ag(t)+ bh(t) F⎯ →⎯ aG(ω )+ bH (ω )

Convolution: x(t)⊗ h(t) = x(t ')h(t − t ')dt '
−∞

∞

∫ F⎯ →⎯ X(ω )H (ω )

δ (t)→ h(t),   H(ω ) → h(t)       a delta function causes the impulse reseponse of filter

eiω0t → h(t),   H(ω ) → H (ω 0 )eiω0t    a sinusoidal single frequency amplitude is modified

Fourier and Laplace transforms are examples of more general integral transforms.  They allow us 
to organize a set of numbers (such as probabilities or electrical currents) so that they can be 
easily manipulated, combined, etc. These transforms are the essential ingredients of quantum 
mechanics.



little more about a delta pulse
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A unit step pulse of duration a centered at 0 is given by

f (t) = 1
a
u(t − a

2
)− u(t + a

2
)⎡

⎣⎢
⎤
⎦⎥

Fourier transform of this is 

F(ω ) = 2
sin(aω

2
)

aω
As a→ 0,   F(ω )→1,  as the contributions from all frequencies spread. 
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The  the inverse Fourier transform is  

dω
−∞

∞

∫
1
π

sin(aω
2

)

aω
× (cos(ωt)+ isin(ωt))

Notice that the "sin" terms cancel each other out as we add complex
conjugate pairs giving us a symmetric function f (t).
Cosine terms keeping adding at t = 0 giving an infinity at 0 as a → 0



Discrete Fourier Transform
g(t) is a real function. 
A symmetric form of Fourier and Inverse Fourier transforms.

G(ω ) = g(t) e− iωt dt
−∞

∞

∫ ; g(t) = 1
2π

G(ω ) eiωt dω
−∞

∞

∫
If units of g(t) are volts then G(ω ) has units of volts/Hz
set time domain 0 to T  with M samples. 

Δ= T
M

;  define index k =  0,...,  M -1;   tk = Δ i k; gk = g(tk )

Use asymmetric form of Discrete Fourier Transform 

Gl = gke
− i2π l⋅k

M

k=0

M−1

∑ ; gk =
1
M

Gle
i2π l⋅k

M

l=0

M−1

∑
gk and Gl  have the same units.  What is the relation between G(ω ) and Gl ?

G(2π f ) = g(t)e− i2π ft dt ... f = l
N ⋅ Δ−∞

∞

∫

G(2π fl ) = g(t)e
− i2π l

N
t
Δ dt

−∞

∞

∫ ⇒ !Gl = gke
− i2π l⋅k

N Δ
−M /2

M /2

∑

Gl = !Gl ⋅
1
Δ

It is useful to pay attention to the units when plotting Gl

If the normalization is chosen to be symmetric, then ratio is  ( 2π
M

.1/Δ)

Fourier 
transform

Discrete Fourier 
transform



some more simple observations about the DFT 
x0,..., xM−1  are real numbers. Imagine it is a waveform.

Xl = xke
− i2πk l /M

k=0

M−1

∑

xk =
1
M

Xle
i2πk l /M

l=0

M−1

∑
Both of these are M-periodic:  Xl+M = Xl , xk+M = xk
using M-periodicity and that xk  are real:   X− l = Xl

* = XM−l

Take the case of M to be even: 
X0 ∈Real and XM/2 ∈Real; 
X1 to XM/2-1  are complex and XM−1  to XM /2+1  are conjugate.
This means there are only (M / 2 -1)2 + 2 =  M  independent numbers.

Take the case of M to be odd:
X0 ∈ Real
X1 to X(M−1)/2  are complex and XM−1  to X(M+1)/2  are conjugate.
This means there are only (M -1) / 2 × 2 +1= M  independent numbers.

The DFT is often implemented with fast algorithms called "Fast Fourier Transforms".
The FFT uses symmetries in clever ways to cut down the number of complex 
summations that must be performed.   Reference:  Numerical Recipes textbook. 
 

Ulk = e− i2π /M( )lik ,       l,k = 0,...M −1,  is a unitary matrix, 

and the DFT is a linear matrix transform



non-trivial example (I used symmetric version)
g(t) = e

− tt 4

4!
u(t)⇔G(ω ) = 1

2π
1

(iω +1)5    here u(t) = 1 if  t ≥ 0
0 otherwise

⎧
⎨
⎪

⎩⎪
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Low pass,  integrator. 
Input is connected with ideal voltage source with 
zero impedance and output is measured with 
infinite impedance. 

12

Vo(t) =Q /C,        and     Vi (t)−Vo(t) = R ⋅ I(t)
dVo(t)
dt

= Vi −Vo
τ

 where τ=RC

Use Vi (t) = vie
iωt  for the input and Vo(t) = voe

iωt  as output. 

iωvo + vo /τ = vi /τ

vo = vi ×
1/τ

iω +1/τ
= vi

1
1+ (τω )2⎡⎣ ⎤⎦

1/2 e
iθ  where θ = Arctan(τω )

Notice that for ωτ ≪1 the filter just passes the input through
Take inverse Fourier transform of the transfer function to get inpulse response

h(t) = e
− t /τ

τ
 for t > 0  and 0 for t < 0

 If Vi  is a pulse with duration less than τ  then Vo  becomes an integral of Vi /τ . 

Example 1

For any Vi, we can calculate the 
frequency components (or 
Fourier transform), multiply by 
the filter function, and invert. 



High pass,  differentiator

Input is connected with ideal voltage source with 
zero impedance and output is measured with 
infinite impedance. 

Vo(t)+Q /C =Vi (t)
dVo(t)
dt

+ I(t) /C = dVi (t)
dt

 where I(t) is the current.  

Vo(t) = I(t)× R therefore 
dVo(t)
dt

+ Vo(t)
τ

= dVi (t)
dt

  where τ = RC  is called the time constant. 

Use Vi (t) = vi (ω )eiωt  for the input and Vo(t) = vo(ω )eiωt  as output. 

vo = vi ×
iω

iω +1/τ
= vi

1
1+1/ (τω )2⎡⎣ ⎤⎦

1/2 e
iθ  where θ = Arctan(1 /τω )

Inverse Fourier transform of the transfer function. 

h(t) = δ (t)− e
− t /τ

τ
  for t > 0 and δ (t) for t < 0

13

Example 1
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Set RC = 1 Output if Input is delta(t) Output if Input is Step 
function u(t) = 1 for t>0
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δ (t)− e− t e− t

e− t 1− e− t

differentiator

integrator



Simple 1 DOF system(this has electrical analog when inductors are present)

k

c

m

x(t)
m d 2x
dt 2 + c dx

dt
+ kx = 0

 Set  x(t) = Xeiωt

−ω 2mX + iωcX + kX = 0    This yields a solution for ω

ω = -i c
2m

± k
m

1− c2

4mk

Set ζ = c
2mω n

, ω n
2 = k

m
 is the natural frequency 

ω = −iζω n ±ω n 1−ζ 2 ,  the complete solution is then 

x(t) = e−ξωnt (x0 Cos(ω dt)+
v0 + ξω nx0

ω d

Sin(ω dt))

where ω d =ω n 1−ζ 2  is called the damped frequency.  At ζ =1 (critical damping), there is no oscillation
If we assume small damping, then the intercept of this motion is 
the initial displacement x0  and the initial slope corresponds to ~v0
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This is not a forced system and it will respond in case of an initial 
condition that is non-zero.  



Example 3 forced mechanical system 

k

c

m

Units     k: N/m,    c: N/m/s
f(t): applied force in N

m d 2x
dt 2 + c dx

dt
+ kx = f (t)

Fourier: x(t)⇔ X(ω ); f (t)⇔ F(ω )
−ω 2mX + iωcX + kX = F(ω )

X
F
= 1
k

1
(1−ω 2 /ω n

2 )+ 2i(ω /ω n )ζ
⎡

⎣
⎢

⎤

⎦
⎥

Input:  f(t)

Output:  x(t)

ω n
2 = k

m
ζ = c

2ω nm

Natural Freq = νn =
ω n

2π
Hz

Damping = ζ   is unitless
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ξ = 0, 0.2, 0.4, 0.6, 0.8,1.0

This is called the transfer function. The 
height of the response at the natural 
frequency depends on the damping. 

If f(t) is a delta function: This is like an 
initial condition solution on the 

previous page. 



Two degrees of freedom with f(t)

m1

k1c
x1(t)

k2

m2x2(t)

f(t)

m1
d 2x1

dt 2 + c dx1

dt
+ k1x1 + k2 (x1 − x2 ) = f (t)

m2
d 2x2

dt 2 + k2x2 − k2x1 = 0

In Fourier space 

−ω 2m1 + iωc + (k1 + k2 ) −k2
−k2 −ω 2m2 + k2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

X1
X2

⎛

⎝
⎜

⎞

⎠
⎟ =

F(ω )
0

⎛

⎝⎜
⎞

⎠⎟

First assume c = 0 to get the normal modes

solving for ω  gives

ω 2 = 1
2

k1 + k2

m1

+ k2

m2

± (−4k1k2m1m2 + (k2m1 + k1m2 + k2m2 )2 )1/2

m1m2

⎡

⎣
⎢

⎤

⎦
⎥

Ratio of amplitudes for the two modes are 
X2

X1

= −ω 2m1 + k1 + k2

−k2

Here one plugs in the two eigenvalues of ω +  and ω −

We also define ω1
2 = k1

m1

 ; ω 2
2 = k2

m2

Do this as a homework 
problem.  Also think of how 
to do this where f(t) is 
replaced by  floor vibration. 



X1
F

= −(k2 −m2ω
2 )

k2
2 − (k1 + k2 −m1ω

2 + icω )(k2 −m2ω
2 )

X2
F

= k2
k1k2 + icω (k2 −m2ω

2 )− (k2m1 + k1m2 + k2m2 )ω
2 +m1m2ω

4

H2 (ω ) =
X2
F / k1

= 1

1+ i2ω 2

ω1

ω
ω 2

ξ1 1−
ω 2

ω 2
2

⎡

⎣
⎢

⎤

⎦
⎥ − 1+ k2

k1
+ ω 2

2

ω1
2

⎡

⎣
⎢

⎤

⎦
⎥
ω 2

ω 2
2 +

ω 2
2

ω1
2
ω 4

ω 2
4

Transfer Function
ω1

2 = k1
m1

ξ1 =
c

2ω1m1

Damping = ξ1   is unitless
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Front end electronics (General Principles) for 
radiation detection

• Detector is assumed to produce a current pulse i(t)  

• Detector is modeled by capacitance Cd   

• Any device the produces current can be modeled as an ideal current source 
with an impedance parallel to the source.  (Norton’s theorem) 

• There has to be a bias high voltage to create the current. This is blocked from 
the amplifier by a capacitor Cc. The current will go through a path of 
resistance Rs to the preamp and then a shaper will eliminate unwanted signal 
structure. 

19



Amplifiers(how to control output)

20

• Analysis of such circuits can be done using the ideal Op-amp in which A is 
infinite, and the input has infinite impedance.  

• Amplifier inverts signal, and small amount is fed back to control the output.   

• Voltage Preamp amplifies the voltage at the input if the detector capacitance is 
constant. 

• It is usual in particle physics to have a charge sensitive preamp since detector 
capacitance can vary and it is not good to have noisy resistances at input.  

• The chain of amp/shaper has a transfer function. The pulse is shaped for 
optimum S/N. 

i Vo = −AVa

i = Va −Vin
R1

= Vo −Va
R2

Vo = −Vin
R2
R1

1+ (R1 + R2 )
R1A

⎡

⎣
⎢

⎤

⎦
⎥

−1

Va



Example 4: CR-RC4 filter

Purpose is to create a Gaussian shaped pulse from an initial step 
voltage.  The height of the pulse should be the voltage step.  The 
peak of the pulse is given by the peaking time which is n 𝜏=RC = 1/𝛾

21
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CR-RC4 we can just multiply the transfer functions  to 
get the complete transfer function. Using Laplace 
transforms we get.  (in this case s -> iω to get Fourier)

Vo(s) =Vi (s)×
s

s +1/τ
× 1
(s +1/τ )4

This can be inverted to obtain time domain 
pulse for some Vi.  For a unit step pulse

There are ways of making this more 
symmetric by introducing complex 
“poles” in the transfer function.  

Vi (s) = 1/ s

Vo(t) =
t 4

4!
e− t /τ

22



The ideal preamp produces a step function called a “tail 
pulse”. This step must be shaped.

Input is step function 
with a CR-RC filter. 
Peak is at time =1*𝜏

Input is step function 
with a CR-RC4 filter. 
Peak is at time =4*𝜏 
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Input is step function 
with a RC5 integrator. 
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delta response will 
have an undershoot

work out the response to a square pulse



The real input pulses are pulses with some widths. Or they 
have a long shaping time to bring them back to baseline.  
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Output after  
RC5
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More about shaping, a 5th order shaper

25

F(s) = 1
(s + a)5 → f (t) = t

4

4!
e−at

This has a maximum at t = 4 / a

f (4 / a) = 32
3
e−4

a4 = 0.195
a4

f (15 / a) ≈ 0.6 *10−3!It takes 15 times to restore baseline.
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Complex poles allow the baseline to be 
restored much faster.  

F(s) = 1
(s + a)((s + acos(φ))2 + a2 sin2 (φ))((s + acos(ϕ ))2 + a2 sin2 (ϕ ))

→ f (t) = Ae−at + Bie
−rit cos(cit + γ i )

i=2,3
∑
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φ = 22.9o,ϕ = 47.2o

In addition, we can adjust the 
amplitude to obtain the same peak 
for any value of shaping time.

Ohkawa,Yoshizawa,Husimi, NIM 138, 85-92, 1976



If you want to explore more….(also look at control theory )

26

There is an extensive theory behind optimum shaping of  analog pulses using either 
analog or digital methods. Digital shaping can be done by gated integration. Shaping 
using analog electronics is called time-invariant shaping. It uses a suitable configuration
of poles to create a semi-Gaussian output.  Examples of  unipolar shaping are 

T (s) = 1
(s + p)n

 r-shapers n = 2,3,4...

T (s) = 1

[(s + ri )
2 + ci

2 ]
i=1

n/2

∏
    c-shapers n = 2,4,6...

ri  and ci  are real and imaginary parts of complex-conjugate poles. 
Time domain pulses can be obtained by using partial fraction expansion and inverse Laplace

f (t) = 1
(n −1)!

t n−1e− tp     this is for r-shapers n = 2,3,4,...

f (t) = 2 Ki e
−rit Cos(−cit + Arg(Ki ))      for c-shapers n = 2,4,6...

i=1

n/2

∑
Ki  are obtained from partial fraction expansion. As n increases this becomes more Gaussian. 
The peaking time (τ p ) characterizes the frequencies that are filtered and the noise performance. 
The width (τ w ) or time to baseline defines the rate capability.  For a given τ p ,  the higher the 
order, the shorter the τ w



Noise waveforms at the output 

• Systems will produce random outputs in response to random fluctuations at the 
input or in internal components. These fluctuations could be due to thermal motions, 
statistical fluctuations in electrical currents, or environmental disturbances.  

• The waveforms can be thought of as continuous variables of time or they could be 
digitized at discrete intervals. 

• How do we  categorize and analyze these noise waveforms ? Can it be done 
generally for all systems ? 

• We will do this using some mathematical devices. Most important is the delta 
function.  

• The problem of the random walk arises in many situations.

• Brownian motion - Einstein (1905)

• Stock markets - Original formulation by Louis Bachelier (1900)

• It is the basis of the advanced financial mathematics that is currently taught in 
business schools.  



Partial bibliography
• S.O. Rice Bell Syst. Tech. J 23:283-332 (1944) and 24:46-156  (1945).  

• W. Schottky Ann. Phys. 57:451-567 (1918). W. Schottky Phys. Rev. 28 (1926). 

• Edoardo Millotti, ArXiv: physics/0204033 (has large bibliography)

• W. H. Press Comments, Astrophys 7 (1978) 103. 

• statlect.com digital textbook on probability theory 

• G.F.Knoll’s text book on radiation detectors.  

• For an introduction to the method of characteristic functions see: any good 
textbook on probability and statistics. Introduction to Probability Theory … 
William Feller (1950).  

Analysis of noise is an old subject that is still evolving.  For deeper understanding, 
need familiarity with: 1) real and complex analysis, 2) probability theory, 3) calculus of 
randomness.  

There is a lot of other good material. But some of it is confusing.  Confusion has origins in 
either the material being too dated with old definitions or having sloppy mistakes in units of 
Fourier transforms and power spectra (as pointed out by Millotti). 

http://statlect.com


Take time interval  0 → T
Assume there are N elementary noise excitations in this time interval.
Each characterized by qi

e(t) = qiδ (t − ti )
i=1

N

∑
If each elementary excitation produces a response g(t) (with Fourier transform G(ω )) 
then the noise waveform is given by 

eg(t) = qig(t − ti )
i=1

N

∑
Fourier transform of this is given by 

EG(ω ) = qiG(ω )
i=1

N

∑ e− iωti

We have to examine this function as N →∞,  and q correspondingly goes to 0. 

White noise 



Well-known characteristics of the noise waveform
Let eg(t) be the noise output (voltage) at time t.  This is a  real random 
number at time t.  

eg(t) = qig(t − ti )
i=1

N

∑ ⇒ EG(ω ) = qiG(ω )
i=1

N

∑ e− iωti

1) Probability Density Function  f (eg(t)) is independent of t. (stationarity). 
2) The joint probability density  of f (eg(t),  eg(t ')) only depends on (t - t ')
3) The mean eg(t)  = 0  (just for convenience). 
It is well known that f (eg(t)) has a Gaussian distribution (Find out how to prove this)

These items are needed to specify all characteristics of eg(t). 

The variance is given by erms = eg(t)2 = P

ac(τ ) = eg(t).eg(t +τ ) ...Autocorrelation. 
We will show that the ac(t) is simply the inverse Fourier transform of the power spectrum.  
In actuality, one can write down multi-point autocorrelation
acn (τ1,τ 2,...,τ n ) = eg(t)eg(t +τ1)...eg(t +τ n )
For a stationary process all of these must not depend on t. 



Taking the average
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The average value of eg(t) is not an average over time 
(0 →  T ), but an average over great many intervals of length T 
with t held fixed. Imagine that g(t) is a pulse much shorter 
than T, and rate r =N/T constant.
Then let the number of intervals go to infinity. 

eg(t) = r q g(t)dt
−∞

∞

∫
This is the average value of the pulse multiplied by the rate. 

eg(t)2 − eg(t) 2 = r q2 g(t)2 dt
−∞

∞

∫
This proof takes a bit of work, ... 

This is called Campbell's theorem. In its most general form, the averages of powers 
of g(t) form the coefficients of expansion of the logarithm of the charateristic function.  
We leave this for you to investigate.  



ac(τ ) = eg(t) ⋅eg(t +τ
−∞

∞

∫ )dt    is the autocorrelation function for the noise.  

Convert to Fourier transform     EG(ω ) = Fourier[eg(t)]

ac(τ ) = 1
(2π )2

dt dω dω ' EG(ω ')eiω 'tEG(ω )
−∞

∞

∫
−∞

∞

∫
−∞

∞

∫ eiωteiωτ

First integrate over t

ac(τ ) = 1
(2π )2

dω ' dω (2πδ (ω +ω '))EG(ω )EG(ω ')
−∞

∞

∫
−∞

∞

∫ eiωτ

Switch ω '→ -ω ,   recall that EG  is Hermitian EG(-ω ) = EG*(ω )

ac(τ ) = 1
2π

dω EG(ω ) 2 eiωτ
−∞

∞

∫
This is called the Weiner-Khinchin theorem.  It states that the autocorrelation is
the inverse Fourier transform of the power spectrum of the noise. 
Therefore  only the power spectrum is needed to specify the characteristics of
the noise. When τ=0, we end up with Parseval's theorem. 

eg(t)2

−∞

∞

∫ dt = 1
2π

dω EG(ω ) 2

−∞

∞

∫     We now need to figure this in terms of g(t) or G(ω )

Autocorrelation and the power spectrum

This is the simple version of this 



We now work on the previous result for white noise 
and relate it to the impulse response function of the system. 

ac(τ ) = 1
2π

dω EG(ω ) 2 eiωτ
−∞

∞

∫

ac(τ ) = 1
2π

dω qiqjG(ω )G*(ω )e− iω (ti−t j )eiωτ
j=1

N

∑
i=1

N

∑
−∞

∞

∫
as N →∞ and if all qi  have the same magnitude

ac(τ ) = 1
2π

dωG(ω )G*(ω ) i N i q 2

−∞

∞

∫ i eiωτ

If we set q = ±Q / N  where Q is the elementary noise charge then 

ac(τ ) = 1
2π

dω G(ω ) 2 iQ2

−∞

∞

∫ i eiωτ

This shows that the noise characteristics for white noise after a filter are only dependent on
the power spectrum (or transfer function) of the filter. 
I have played a small trick to make this simple. 

Goes away for ti − t j ≠ 0



And so we finally have 

eg(t)2 − eg(t) 2 = r ×Q2 g(t)2 dt =
−∞

∞

∫ r × Q
2

2π
G(ω ) 2 dω

−∞

∞

∫
This states that variance (RMS) of the noise depends on the filter
power spectrum.  The argument was done starting with white noise, but is general. 
The noise has a finite variance only if the integral converges. This  
depends on the nature of the filter function and its poles.  

What do we do if the noise at the input is not white ? 

a) Numerically, we can absorb the additional frequency dependence into G(ω )
b) Clearly the native input noise must also be limited in frequency domain and so 
additional terms may be needed in the model.  
c) The best might be to use an empirical model using measurements of the system.
d) In practice there should be no divergence, but there are interesting cases where noise 
will wander off to very high values. 
 



Power spectrum of noise from detector systems

There is a vast literature on this subject

Noise type Pulse Model Power 
spectrum Divergence Practical 

devices

White train of δ(t) ~1
Total noise 
diverges at 

infinite frequency

High frequency 
cutoff

Brownian 
motion

Integral of 
train of δ(t) ~1/f2

Total noise power 
diverges at 0 

frequency

Low frequency 
cutoff

Flicker or 1/f
Train of pulses 

that have a     
1/√(t-t0) fall

~1/f
Total noise 

diverge at both 0 
and infinity

Both high and 
low cutoff

These infinities do not happen because practical devices (including 
analysis processing) have cutoffs at low and high frequencies. These 

cutoffs need to be understood to evaluate the result.
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eventually this looks the same forward or backwards in time. It is not 
possible to figure our the direction of time from a snippet of data. 

Integration of white noise is Brownian noise



closer look at Brownian motion noise
Part of the system noise could be due to integration of white noise. 
What is the spectral power of such noise ?  

Recall  Fourier[ f (x)
−∞

t

∫ dx]= 1
2π

(F(ω )
iω

+πF(0)δ (ω ))

Start with white noise e(t) = 1
N

siδ (t − ti ) si = ±1  and ti  are random
i=1

N

∑ .

Fourier transform of the integral of e(t) is 

E(ω ) = 1
2πN

si (
e− iωti

iωi=1

N

∑ +πδ (ω )) ...second term is the dc component

E(ω ) ⋅E*(ω ) = 1
2πN

N
ω 2 +π

2 sis jδ
2 (ω )∑⎡

⎣⎢
⎤
⎦⎥

 second term zero for no dc component

This converges at high ω , but diverges at zero. 
If there is an additional shaping filter G(ω ) then  the spectral power is given by

Sbrownian (ω )= 1
2π

G(ω ) ⋅G*(ω )
ω 2

⎡

⎣
⎢

⎤

⎦
⎥

To make sure this converges there must be a filter that cancels out the denominator.
Or in another words differentiates the waveform.  



High pass,  differentiator

Vo(t)+Q /C =Vi (t)
dVo(t)
dt

+ I /C = dVi (t)
dt

Use Fourier Transforms to solve 
F V (t)[ ]=V (ω ), F[V '(t)]= iωV (ω )
iωVo(ω )+Vo(ω ) / RC = iωVi (ω )

Vo(ω ) =Vi (ω )×
iω

iω +1/τ

Vo
Vi

2

= ω 2

(ω 2 +1/τ 2 )

38

With the application of a high pass filter with time constant τ
the Brownian noise can be relaxed so that it does not diverge 
at low frequency.  

Sbrownian−relaxed (ω )= G(ω ) 2

ω 2 × ω 2

(ω 2 +1/τ 2 )
⎡

⎣
⎢

⎤

⎦
⎥

Sbrownian−relaxed (ω )= G(ω ) 2

(ω 2 +1/τ 2 )
⎡

⎣
⎢

⎤

⎦
⎥

If G(ω )=1 then the filter simply is flat for ω<<1/τ  
and falls as 1/ω 2  for ω>>1/τ  
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Large capacitors charge up spontaneously 
and need to have a discharging resistor 
even while being stored. 



Brownian noise after application of 
high pass filter
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Brownian Spectrum highpass rc=10
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Origin of flicker noise
There does not seem to be an obvious mechanism that produces noise 
with spectrum that varies as ~1/ω .  
If the elementary pulses go through an exponential filter (τ=RC) then

EG(ω ) = qie
− iωtiG(ω )

i=1

N

∑ = qie
− iωti × 1

1+ iωτi=1

N

∑

Power spectrum  S(ω ) =Q2 1
1+ (ωτ )2  falls as ~1/ω 2
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What if the time constant itself is uniform randomly changing between
1/τ1  to 1/τ 2  then the spectrum has to be averaged over this 

S(ω )= 1
1/τ1 −1/τ 2

Q2 1
1+ (ω / λ)2 dλ

1/τ 2

1/τ1

∫
The solution to this has a region where 

S(ω ) ≈ π
2(1 /τ1 −1/τ 2 )

× 1
ω

  when 1/τ 2 <ω <1/τ1

We can do this by Monte Carlo. 
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Flicker noise. What kind of pulse in time domain ?
White noise has a flat frequency spectrum  Sw (ω )∝1

Brownian motion noise is the integral of white and SB(ω )∝ 1
ω 2

What kind of noise has a power law SF ∝
1

ω 1+α  with α <1 ?

Construct Fourier transform of (1/ω ) noise:   FF (ω ) = 1
N

e− iωti × 1
ωi=1

N

∑
(In mathematics this represents a fractional integral in time domain.)  
Perform Inverse Fourier of FF (ω ). Just take one pulse at t0

fF (t) = 1
2π

1
ω−∞

∞

∫ e− iωt0eiωtdω

= 1
2π

1
ω−∞

0

∫ e− iωt0eiωtdω + 1
ω0

∞

∫ e− iωt0eiωtdω
⎡

⎣
⎢

⎤

⎦
⎥

= 1
2π

1
−ω0

∞

∫ e+ iω (t0−t )dω + 1
ω0

∞

∫ e+ iω (t−t0 )dω
⎡

⎣
⎢

⎤

⎦
⎥

This integral has a branch cut because of the ω . The answer is 

fF (t) =

2 / t − t0 t > t0 = J+
0 t ≤ t0
0 t ≥ t0

2 / t0 − t t < t0 = J−

 A linear combination of J+ , J−

⎧

⎨

⎪
⎪⎪

⎩

⎪
⎪
⎪

(advanced and retarded) 
This is why this noise is 
not time reversible. 
In retarded case, the noise 
dies off as 1/t0.5 after a pulse.

This is a crazy integral 

Such a pulse is very problematic because it gives very long time 
correlations. The past never goes away.



Examples of 1/f spectra
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Measurement of light pulses 
from a PMT by Aiwu Zhang

This noise is deeply related to the 
structure of the device and therefore could 
be sensitive to failure modes. 



High pass,  differentiator

43

With the application of a high pass filter with time constant τ
the 1/f noise can be relaxed so that it does not diverge 
at low frequency.  

SFlick (ω )= 1
2π

G(ω ) 2

ω
× ω 2

(ω 2 +1/τ 2 )
⎡

⎣
⎢

⎤

⎦
⎥

SFlick (ω )= 1
2π

G(ω ) 2 ×ω
(ω 2 +1/τ 2 )
⎡

⎣
⎢

⎤

⎦
⎥

If G(ω )=1 then the filter gives 0 for DC and rises for ω<<1/τ  
and falls as 1/ω  for ω>>1/τ  

Notice that the power is zero for at f=0 regardless of the 
value of the time constant. 
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simulated
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1/fSpectrum highpass rc=10
Sounds like a water fall



Summary 
• We learned or reviewed the use of Fourier/Laplace 

transforms for linear systems. 
• We learned how they are used to understand 

electronics and mechanical systems. (There are 
sophisticated codes for doing this). 

• The tools of using delta functions can be easily 
extended to perform Monte Carlo calculations. 

• We learned about classification of noise spectra 
and their origin.  

• I have left a lot of important details out. It is easy 
to follow up using many papers on the web or 
textbooks.  Try to derive the relations yourself. 


