Lecture 2: calculating jet properties

- * QCD in the soft/collinear limit
- * inclusive and exclusive observables
- * the jet mass as a case study

perturbative QCV

- * asymptotic freedom allows us to apply perturbation theory for processes with high momentum transfer
- * in this context, jets allows us to use the language of partons: we're inclusive over the details of the hadronic final state (pions, kaons, etc.)
- * we will consider IRC safe observables and jet algorithms

* apply perturbative QCD to describe jet physics

homework 3

Considering the emission of a soft gluon as shown in the diagram below, derive the eikonal Feynman rule for a quark lin

IRC singularities

* QCD matrix elements are singular in the IRC limits

 rather general theorems ensure cancellation of singularities when real and virtual are added together

a model NLO calculation

* we want to calculate the cross-section for a jet observable at NLO (e⁺e⁻ for simplicity)

 $\sigma(v) = \int d\Phi_n |M_{\rm LO}|^2 J_n + \int d\Phi_{n+1} |M_{\rm real}|^2 J_{n+1} + \int d\Phi_n |M_{\rm virt}|^2 J_n$

* in the soft/collinear limit real and virtual are the same up to a sign

 $\sigma(v) \simeq \int d\Phi_n |M_{\rm LO}|^2 J_n + \int d\Phi_n |M_{\rm LO}|^2 \frac{d^3 q}{(2\pi)^3} \frac{1}{2|q|} 2g_s^3 C_F \frac{k_1 \cdot k_2}{k_1 \cdot qk_2 \cdot q} \left[J_{n+1} - J_n\right]$

* IRC safety of the observable J guarantees cancellation of singularities

inclusive vs exclusive

- for observables that sum inclusively over IRC radiation this cancellation is perfect
- these observables can be safely computed order by order in the strong coupling, e.g. pt distributions
- situation is different if the observable J restrict real radiation to a cornel of phase-space
- * R/V cancellation is incomplete and large logarithms are left behind

$$\alpha_s \int_0^{Q_0} \frac{dk_t}{k_t} \bigg|_{\text{real}} - \alpha_s \int_0^Q \frac{dk_t}{k_t} \bigg|_{\text{virtual}} = -\alpha_s \int_{Q_0}^Q \frac{dk_t}{k_t} \bigg|_{\text{virtual}} = \alpha_s \ln \frac{Q_0}{Q}$$

jet properties

- * we want to studies the properties of jets
- * hence, we resolve a (high pt) jet down to a smaller scale, e.g. its mass
- large logarithms appear invalidating the fixedorder expansion
- * we need to reorganise the calculation so that we can consider any number of soft/collinear partons: resummation
- * vast field with many approaches: dQCD, SCET, etc.

how do we model it?

- *iet properties: we want to compute x-sections and distributions with many particles in the final state fixed-order perturbation theory seems inadequate interesting physics happens at small angular separation and small energies*
- * all-order (resummed) calculations are possible and necessary !

Monte Carlo Parton Showers emissions at small angles factorize

$$d\sigma_{n+1} \simeq d\sigma_n \frac{\alpha_s}{2\pi} \frac{d\theta^2}{\theta^2} dz d\phi P(z,\phi)$$

we can write a computer program that simulates these classical branchings

how do we model it?

- *iet properties: we want to compute x-sections and distributions with many particles in the final state fixed-order perturbation theory seems inadequate interesting physics happens at small angular separation and small energies*
- * all-order (resummed) calculations are possible and necessary !

Analytic Resummation

emissions at small angles factorize

$$d\sigma_{n+1} \simeq d\sigma_n \frac{\alpha_s}{2\pi} \frac{d\theta^2}{\theta^2} dz d\phi P(z, \phi)$$

soft emissions factorize in a subtle
$$\underset{d\sigma_{n+1} \simeq d\sigma_n \frac{\alpha_s}{2\pi} d\theta dz d\phi}{\overset{\text{Way}}{\sum}} C_{ij} D_{ij}(z, \theta, \phi)$$

$$\sigma_{res} = 90$$

exp[91($\alpha_{s}L$)/
 $\alpha_{s}+92(\alpha_{s}L)+\alpha_{s}$
93($\alpha_{s}L$)+...]

 powerful general-purpose tools
 provide fully differential events on which any observable can be measured
 interfaced with non-perturbative models to give a realistic description
 theoretical accuracy difficult to assess (often low)

VS

 $\sigma_{res} = 90$ exp[91($\alpha_{s}L$)/ $\alpha_{s}+92(\alpha_{s}L)+\alpha_{s}$ 93($\alpha_{s}L$)+...] * feasible for a limited number of observables
 * well defined and improvable accuracy
 * state-of-the art (resummation + fixed order)
 * provide insights and understanding

σ_{res} = 90 exp[g1(α3L)/ α3+g2(α3L)+α3 g3(α3L)+...]

* all-order leading logs: veto emissions which would give too big a mass

* exponential that gives the no-emission probability

Ores = 90

* all-order leading logs: veto emissions which would give too big a mass

exponential that gives the no-emission probability *

resummation

* the all-order calculation can be systemically improved

$\sigma_{res} = g_0 \exp[g_1(\alpha_s L)/\alpha_s + g_2(\alpha_s L) + \alpha_s g_3(\alpha_s L) + \dots]$

* $g_1 \rightarrow$ leading logarithmic accuracy * $g_2 \rightarrow$ next-to leading logarithmic accuracy * $g_3 \rightarrow$ next-to next-to leading logarithmic accuracy * $g_0=1+\alpha_sC_1+...$

* g1 is fairly simple: soft and collinear physics

* the structure of g2 is already highly non trivial

collinear emissions

* collinear emissions are easy to deal with

- * soft/collinear contributes to g1 while hard collinear to g2
- * same calculation as before but with running coupling

$$g_{\rm coll} = \int_{\rho}^{1} \frac{d\rho'}{\rho'} \int dz P_{gq}(z) \frac{\alpha_s(k_t)}{2\pi}$$

 very soft/collinear emissions are sensitive to the Landau pole: peak region receives important nonpert. contributions

soft emissions

soft emissions at large angle are tough for (at least) 3 reasons

* colour correlations

- * jet algorithm dependence
- * non-global logarithms

* all these effects result into NLL corrections, i.e. they enter the resummation function g₂

colour correlations

- * remember that soft-factorization happens at the amplitude level
- * in the soft limit, the soft gluon emission probability off an ensemble of hard partons can be written as

$$|\mathcal{M}|^2 = \mathcal{M}_0^{\dagger} \exp \left[\frac{\alpha_s}{2\pi} \left(-2\sum_{i < j} W_{ij} t_i \cdot t_j \right) \right] \mathcal{M}_0$$

Kidonakis, Oderda, Sterman (1998)

* the sum runs over all the possible dipoles in the hard scattering

****7

- * this gives rise to a matrix structure in colour space
- * dimension of these matrices quickly increases with the number of hard directions

the small-R limit

in the small-R limit a simpler picture emerges
large-angle emissions are R-suppressed and each jet evolves independently
finite R-corrections are at the percent level if R < 0.4, but they reach 0(40%) for R=1.0
they are dominated by 0(R²) terms, while 0(R⁴) are below 1% (even at R=1.0)

homework 4

* the bulk of the O(R²) contribution to the jet mass spectrum arises from the initial-state radiation. Calculate the contribution to the jet mass from the dipole which is formed by the initial-state partons [hint: it's easier to work with rapidity and azimuth]

jet-algorithm dependence

- * does the resummed expression depend on the jet algorithm?
- * two gluons are recombined with each other is their distance is smaller than R and the recombined momentum essentially lies along the harder one
- * as a result a hard gluon can pull a softer one out of the jet
 - * this does not happen if we use anti-k_t algorithm: two soft gluons are always far apart with this measure
 - * with C/A and k_t a soft gluon outside the jet can recombine with a softer one inside, effectively pulling out the latter from the jet
- while the jet mass for anti-k_t does exponentiate, the corresponding distributions for C/A and k_t differ by single logs

calculation 2

non-global logarithms

 p_2

- **but**, even if we use anti-k_t, exponentiation of the independent emission is not the whole story
- the jet-mass is a non-global observable: it receives single log corrections from correlated emission
- * this is a CFCA term and it's missed by single gluon exponentiation
- * in principle we need to consider any number of gluons outside the jet
- colour structure becomes intractable, so the resummation is performed in the large Nc limit

 k_1

63

putting things together

* comparison between NLL and MCs

* general agreement but details depend on the shower

putting things together

* better agreement between at the hadron level

* can capture most of it by a shift of the perturbative result

* things get much worse with UE and pile-up!

summary of lecture 2

 jet properties can be computed using perturbative QCD provides

 precision: NLL is well-established and NNLL is also possible (although non-global logs are problematic)

jet mass suffers from non-pert.
 corrections hadronisation, UE and pile-up