Supersymmetry in Cosmology

Raghavan Rangarajan Ahmedabad University

raghavan@ahduni.edu.in

OUTLINE

THE GRAVITINO PROBLEM

 SUSY FLAT DIRECTIONS AND THEIR COSMOLOGIAL IMPLICATIONS

SUSY DARK MATTER

SUMMARY

PREAMBLE

A BRIEF HISTORY OF OUR UNIVERSE

OBSERVATIONS + GENERAL THEORY
OF RELATIVITY

14 b yr, COMPOSITION, EXPANDING, PAST – HOT AND DENSE

A BRIEF HISTORY OF OUR UNVIERSE

- First second hot primordial plasma of electrons,...
 photons, quarks/protons, neutrons, dark matter, ...
- 1 s 3 min light nuclei (helium, lithium, ..)
- 400,000 years Atoms form, CMBR
- 300 million years First stars form
- 1 billion years First galaxies form
- 9 billion years Solar system formed, DE domin
- 14 billion years Today

THE FIRST SECOND

10⁻⁴⁴ s – Planck time (E ~ 10¹⁹ GeV) [Q Gravity]

Grand Unified Theory

 10⁻³⁸ s – GUT Phase Transition (E ~ 10¹⁶ GeV, T ~ 10²⁹ K)

Standard Model [q, I, H, GB] / Modified SM

- 10⁻¹¹ s Electroweak Phase Transition (E ~ 100 GeV, T ~ 10¹⁵ K)
- 10⁻⁶ s quarks → protons, neutrons (E ~ 1 GeV,
 T ~ 10¹³ K)
- 1 s Primordial Nucleosynthesis begins (E ~ 1 MeV, T ~ 10¹⁰ K)

THE FIRST SECOND

10⁻⁴⁴ s – Planck time (E ~ 10¹⁹ GeV) [Q Gravity]

Grand Unified Theory

• 10⁻³⁸ s – GUT Phase Transition (E ~ 10¹⁶ GeV, ■ T ~ 10²⁹ K)

Standard Model [q, I, H, GB] / Modified SM

- 10⁻¹¹ s Electroweak Phase Transition (E ~ 100 GeV, T ~ 10¹⁵ K)
- 10⁻⁶ s quarks → protons, neutrons (E ~ 1 GeV,
 T ~ 10¹³ K)
- 1 s Primordial Nucleosynthesis begins
 (E ~ 1 MeV, T ~ 10¹⁰ K)

INFLATION and REHEATING

INFLATION – PERIOD OF *ACCELERATED* EXPANSION IN THE EARLY UNIVERSE (t ~ 10⁻³⁸ s or later)

WHEN THE ENERGY DENSITY OF A SLOWLY VARYING FIELD CALLED THE INFLATON Φ DOMINATES

ENERGY DENSITY DOMINATES, DETERMINES EVOL OF UNIV

$$H^2 = \left(\frac{\dot{R}}{R}\right)^2 = \frac{8\pi}{3}G\rho$$

R IS THE SCALE FACTOR; IN EXPANDING UNIV $d = d_1 R(t)/R(t_1)$

DURING THE SLOW ROLL PHASE

ENERGY DENSITY = T + V ~ V ~ CONSTANT

INFLATION and REHEATING

DURING INFLATION, R~ exp(H₁ t)

n OF ALL SPECIES \rightarrow 0. COLD

INFLATON DECAY PRODUCTS THERMALISE, T_{reh} THERMAL BATH HAS q, I, h, dm, BSM INCLUDING SUSY, GUT PARTICLES AND HEAVY NEUTRINOS REHEATING

MATTER-ANTIMATTER ASYMMETRY OF THE UNIVERSE

SOLAR SYSTEM, MILKY WAY, CLUSTER (20 Mpc)

- ANTIMATTER RULED OUT TILL d~1000 Mpc
- SIZE OF OBSERVABLE UNIVERSE ~ 14000 Mpc

$$(1 \text{ Mpc} = 3 \times 10^{19} \text{ km} = 3 \times 10^{6} \text{ lt-yr})$$

MATTER-ANTIMATTER ASYMMETRY OF THE UNIV

HOW GENERATE ASYMMETRY?

- EARLY TIMES (t << 1 s = PRIM. NUCL.) EQUAL AMOUNTS OF MATTER AND ANTIMATTER
- DISEQUILIBRIUM IN THE EARLY UNIVERSE $100 M + 100 A \rightarrow 103 M + 101 A \rightarrow 2 M$

$$X \to M$$
 $X \to A$

 $r_{M} > r_{A}$, GET MORE MATTER THAN ANTIMATTER

• X = GUT BOSONS ($M_X \sim 10^{16}$ GeV), HEAVY NEUTRINOS ($M_N \sim 10^{10}$ GeV)

MATTER-ANTIMATTER ASYMMETRY

WHEREFROM GUT BOSONS, HEAVY NEUTRINOS?

In the hot early Universe when temperatures were very high $(k_BT > M)$ $(k_B=1)$

THE GRAVITINO PROBLEM

GRAVITINOS

 $ilde{G}= ext{ SUPERSYMMETRIC PARTNER OF THE GRAVITON}$

SUPERSYMMETRY

- EXTENSION OF THE STANDARD MODEL (GAUGE HIERARCHY)
- SUPERPARTNERS: FERMION BOSON

PHOTON - PHOTINO, ELECTRON - SELECTRON

LOCAL (spacetime dep) SUPERSYMMETRY: SUPERGRAVITY

 $\operatorname{\mathsf{GRAVITON}} - \operatorname{\mathsf{GRAVITINO}}(\tilde{G})$

BROKEN

(EQUAL m, IF SUSY)

GRAVITINO MASS

SUPERSYMMETRY BREAKING

- ⇒ SM SUPERPARTNERS GET A MASS m₀ ~ 100 GeV
- ⇒ GRAVITINO GETS A MASS

GAUGE MEDIATED SUSY BREAKING (V. LIGHT, LIGHT < 100 GeV)

GRAVITY MEDIATED SUSY BREAKING (HEAVY ≥ 100 GeV)

ANOMALY MEDIATED SUSY BREAKING (V. HEAVY>>100 GeV)

$$(m_{\tilde{G}} : eV - TeV)$$

GRAVITINOS

 $ilde{G}= ext{ SUPERSYMMETRIC PARTNER OF THE GRAVITON}$

PRODUCED AFTER INFLATION $t \sim 10^{-38} \, \mathrm{s} \ (m_{\tilde{G}} : \mathrm{eV} - \mathrm{TeV})$

COSMOLOGICAL CONSEQUENCES (m, n)

• STABLE : AFFECTS EXPANSION RATE, $ho_{ ilde{G}} >
ho_c$ (L/H)

UNSTABLE: AFFECT EXPANSION RATE PRIOR TO DECAY

DECAY PRODUCTS $\rho > \rho_c$

DESTROY LIGHT ELEMENTS ${}^4He, {}^3He, D$ (NUCLEOSYNTHESIS)

GRAVITINOS

 $ilde{G}= ext{ SUPERSYMMETRIC PARTNER OF THE GRAVITON}$

PRODUCED AFTER INFLATION $t \sim 10^{-34} \, \mathrm{s} \ (m_{\tilde{G}} : \mathrm{eV} - \mathrm{TeV})$

COSMOLOGICAL CONSEQUENCES (m, n)

• STABLE : AFFECTS EXPANSION RATE, $ho_{\tilde{G}} >
ho_c$ (L/H)

UNSTABLE: AFFECT EXPANSION RATE PRIOR TO DECAY

DECAY PRODUCTS $\rho > \rho_c$

DESTROY LIGHT ELEMENTS ${}^{4}He, {}^{3}He, D$ (NUCLEOSYNTHESIS)

GRAVITINO PROBLEM(S) => UPPER BOUND ON $ho_{ ilde{\mathbf{G}}} \propto \mathbf{n}_{ ilde{\mathbf{G}}}$ 17

STANDARD PICTURE OF GRAVITINO PRODUCTION

 \rightarrow REHEATING (OSC. + DECAY) (T_{reh}) INFLATION

> → RADIATION DOMINATED UNIV (Relativistic particles)

ALSO PROD DURING P/REHEATING

THERMAL SCATTERING → (gluons, quarks, squarks, gluinos) 18

GRAVITINO PRODUCTION

 \widehat{G} PRODUCED BY THE SCATTERING OF INFLATON **DECAY PRODUCTS**

e.g.
$$q + \bar{q} \to \tilde{g} + \tilde{G}$$
 $q + \bar{\tilde{q}} \to g + \tilde{G}$ $g + \tilde{g} \to g + \tilde{G}$

$$\langle \Sigma_{\mathrm{tot}} | v | \rangle = \alpha / M_{Pl}^2$$
 pradler and steffen

$$G_N = 1/M_{Pl}^2$$

STANDARD CALC OF GRAVITINO PRODUCTION

CALCULATE GRAVITINO PRODUCTION IN THE RAD DOM ERA

MAINLY PRODUCED AT THE BEGINNING OF THE RAD DOM ERAWHEN $T \sim T_{\rm reh}$, and $n_{\tilde{G}} \propto T_{\rm reh}$.

UPPER BOUND ON $n_{ ilde{G}}$

 \Rightarrow UPPER BOUND ON T_{reh} OF 10⁶—9 GeV (MASS 100 GeV – 10 TeV)

$$k_B T \text{ in GeV} \qquad k_B = 1 \qquad 1 \text{ GeV} = 10^{13} \text{ K}$$

GRAVITINOS, REHEAT TEMPERATURE AND MATTER-ANTIMATTER ASYMMETRY

• THE UPPER BOUND ON THE REHEAT TEMPERATURE 10⁶⁻⁹ GeV TO SUPPRESS GRAVITINO PRODUCTION

 $1 \text{ GeV} = 10^{13} \text{ K}$

- THE UPPER BOUND ON THE REHEAT TEMPERATURE 10⁶⁻⁹ GeV TO SUPPRESS GRAVITINO PRODUCTION
- MATTER-ANTIMATTER ASYMMETRY GENESIS MODELS REQUIRE HEAVY X, MASS 10¹⁰, 10¹⁶ GeV

1 GeV = PROTON MASS

 THE UPPER BOUND ON THE REHEAT TEMPERATURE 10⁶⁻⁹ GeV TO SUPPRESS GRAVITINO PRODUCTION

 MATTER-ANTIMATTER ASYMMETRY GENESIS MODELS REQUIRE HEAVY X, MASS 10¹⁰, 10¹⁶ GeV

DIFFICULT TO HAVE ENOUGH HEAVY X IN THE RADIATION DOMINATED UNIV AFTER REHEATING

 $n_X \sim \exp(-M c^2/k_BT)$

- THE UPPER BOUND ON THE REHEAT TEMPERATURE 10⁶⁻⁹ GeV TO SUPPRESS GRAVITINO PRODUCTION
- MATTER-ANTIMATTER ASYMMETRY GENESIS MODELS REQUIRE HEAVY X, MASS 10¹⁰, 10¹⁶ GeV

DIFFICULT TO HAVE ENOUGH HEAVY X IN THE RADIATION DOMINATED UNIV AFTER REHEATING

LOW REHEAT TEMP TO SUPPRESS GRAVITINOS IS A PROBLEM FOR GUT BARYOGENESIS AND LEPTOGENESIS

SOLUTIONS TO THE GRAVITINO PROBLEM

INCREASE GUT BOSON/HEAVY NEUTRINO PRODUCTION, OR SUPPRESS GRAVITINO PRODUCTION

- SCATTERINGS DURING REHEATING BEFORE TOTAL THERMALISATION (NOT X DECAYS)
- T: $0 \rightarrow T_{max} \rightarrow T_{reh}$ $T_{max} \sim 1000 T_{reh}$
- PREHEATING
- SUPPRESS GRAVITINOS USING SUSY FLAT DIRECTIONS

CAVEAT (ALWAYS CHECK)

SUSY FLAT DIRECTIONS AND THEIR COSMOLOGIAL IMPLICATIONS

FLAT DIRECTIONS

V' = 0 ALONG BOTTOM. POTENTIAL IS FLAT

MAG NOT CHANGE, PHASE DOES

SUSY FLAT DIRECTIONS

STANDARD MODEL , H SCALAR (SPIN 0) MINIMISE V

SCALAR POTENTIAL V IN SUSY IS A FUNCTION OF

$$(H_u, H_d, \tilde{q}_i, \tilde{l}_i)$$

DIRECTIONS IN FIELD SPACE OF SCALARS ALONG WHICH THE SCALAR POTENTIAL IS MINIMISED

V' = 0, POTENTIAL IS FLAT — FLAT DIRECTIONS

[POTENTIAL IS CONSTANT AND ZERO ALONG FLAT DIRECTION NOT JUST PHASE CHANGE, MAGNITUDE CHANGE TOO]

SUSY FLAT DIRECTIONS

SM: $\langle \phi \rangle = v$

UDD: $\langle \tilde{u}_L \rangle = \psi, \ \langle \tilde{s}_L \rangle = \psi, \ \langle \tilde{b}_L \rangle = \psi$ phases

Parameter ψ is represented by a complex scalar field ψ (affleck-dine field) whose exp value is ψ

GHERGHETTA, KOLDA AND MARTIN

FLAT DIRECTION FIELD ψ IS NOT THE INFLATON

SUSY BREAKING

FLAT DIRECTION → QUADRATIC POT WITH CURV m₀²

 $\psi_0 \neq 0 \,$ due to quantum fluctuations during inflation; other reasons

A FIELD CONFIGURATION WITH THE FIELD AWAY FROM ITS MINIMUM IS OFTEN CALLED A CONDENSATE, CAN TREAT LIKE CLASSICAL FIELD, DO EOM

SUSY BREAKING

FLAT DIRECTION → QUADRATIC POT WITH CURV m₀²

 $\psi_0 \neq 0\,$ due to quantum fluctuations during inflation; other reasons

WHEN t_U~ t_F (OR H~m_0), $~\psi$ OSCILLATES, $~\psi\sim 1/R^{3/2}$

THEN IT DECAYS (BEFORE EWSB t~10⁻¹¹ s)

COSMOLOGICAL CONSEQUENCES

AFFLECK-DINE BARYOGENESIS

SUPPRESS GRAVITION PRODUCTION VIA DELAYED THERMALISATION DURING REHEATING

GENERATION OF PRIMORDIAL MAGNETIC FIELDS

AFFLECK-DINE BARYOGENESIS

AFFLECK AND DINE, LINDE

TO CREATE A BARYON ASYMMETRY REQUIRES

- B VIOLATION
- CP VIOLATION
- OUT OF THERMAL EQUILIBRIUM

$$V(\psi) = m^2 \psi^* \psi + \frac{i}{2} \lambda (\psi^4 - \psi^{*4})$$

 $B(\psi)$ =1/3 => B VIOLATION VIA QUARTIC COUPLINGS

B VIOLATING COUPLINGS ARE COMPLEX => CP VIOLATION

$$V(\psi)$$
 ψ_I
 ψ_R

$$j_{\mu}^{B} = -i(\psi^* \partial_{\mu} \psi - \partial_{\mu} \psi^* \psi) B_{\psi}$$
$$\int j_{0}^{B} dV = B$$

$$\psi$$
 uniform

$$j_0^B = B/V = n^B$$

$$n_B = -i(\psi^* \dot{\psi} - \dot{\psi}^* \psi) B_{\psi} = \frac{1}{2} (\psi_R \dot{\psi}_I - \dot{\psi}_R \psi_I) B_{\psi}$$

AFFLECK-DINE BARYOGENESIS

$$V(\psi) = m^{2} \psi^{*} \psi + \frac{i}{2} \lambda (\psi^{4} - \psi^{*4})$$

WHEN ψ IS LARGE B AND CP VIOLATING QUARTIC COUPLINGS DOMINATE. $n_{\rm B}$ IS CREATED

LATER QUADRATIC TERMS DOMINATE. NO NEW n_R

$$\psi$$
 decays (e.g. $ilde{q}_c o q/ar{q} + ilde{\gamma}$) and get bau

SUSY FLAT DIRECTIONS

DECREASE \tilde{G}

DELAYED THERMALISATION DURING REHEATING

e.g.,
$$ilde{q}^* ilde{q} A^\mu A_\mu$$

NON-ZERO VALUE OF ψ GIVES MASS TO GAUGE BOSONS (BREAKS GAUGE SYMMETRY),

FLAT DIRECTION EXPECTATION VALUE CAN BE 10¹³ GEV OR HIGHER

THERMALISATION DURING REHEATING DUE TO PROCESSES MEDIATED BY GAUGE BOSONS – PHOTONS (EM), GLUONS (STRONG)

IF ALL GAUGE BOSONS GET MASS [LLddd, QuQue], IT SLOWS DOWN THERMALISATION AFTER INFLATION

STANDARD PICTURE OF REHEATING:

INFLATON DECAYS \to n_0 \to THERMALISE KINETIC EQM n_0 CHEMICAL EQM n_1 [104]

FLAT DIRECTIONS:

INFLATON DECAYS $\rightarrow n_0 \rightarrow$ DELAYED THERMALISATION

$$n \sim n_0 \ll n_1$$

DILUTE PLASMA

GRAVITINOS PRODUCED BY SCATTERING OF INFLATON DECAY PRODUCTS [n.n]

 $n_{\tilde{G}} \downarrow \downarrow$

ALLAHVERDI AND MAZUMDAR; RR AND A. SARKAR

GRAVITINO PROBLEM AGAIN!

- WITH SOME FLAT DIRECTIONS, HIT A RESONANCE
- GRAVITINO ABUNDANCE GENERATED IS VERY LARGE AND GREATER THAN THE COSMOLOGICAL UPPER BOUND FOR MOST PARAMETER SPACE
- COSMOLOGICAL UPPER BOUND IS Y < 10⁻¹⁴
- FOR DIFFERENT SETS OF PARAMETERS

$$Y = 10^{-8} - 10^{-2}$$
 MAHAJAN, RR AND A. SARKAR

SUSY FLAT DIRECTIONS

GENERATE PRIMORDIAL MAGNETIC FIELDS

PRIMORDIAL MAGNETIC FIELDS

- DETECTED MAGNETIC FIELDS ON DIFFERENT COSMOLOGICAL LENGTH SCALES FROM GALAXIES TO CLUSTERS
- ORIGIN IS UNKNOWN
- DYNAMO THEORY: PRIMORDIAL MAGNETIC FIELD, AMPLIFIED BY DYNAMO PROCESS
- SOURCE OF PRIMORDIAL MAGNETIC FIELD UNKNOWN

PRIMORDIAL MAGNETIC FIELDS

- GENERATE THE PRIMORDIAL MAGNETIC FIELD DURING INFLATION
- GAUGE FIELD

$$A^{\mu}(x) = \sum_{\lambda} \int d^3k \, \epsilon_{\lambda}^{\mu}(k) A_k(t) \exp(i\mathbf{k}.\mathbf{x}) a_{\mathbf{k}} + h.c.$$

- SOLVE EOM FOR A_k IN CURVED SPACETIME
- |A_k(t)| CAN GROW IF m_A ≠ 0
 EQUIVALENT TO CREATING E AND B FIELDS

E DISAPPEARS. GET PRIMORDIAL B.

PRIMORDIAL MAGNETIC FIELDS

$$\tilde{q}^*\tilde{q}A^{\mu}A_{\mu}$$

NON-ZERO VALUE OF AFFLECK-DINE FIELD ψ GIVES MASS TO A $^{\text{\tiny P}}$

FLAT DIRECTIONS CAN GIVE RISE TO PRIMORDIAL MAGNETIC FIELDS

ENQVIST, JOKINEN AND MAZUMDAR

SUSY DARK MATTER

- IF R PARITY IS CONSERVED, LSP IS STABLE
- IF IT IS FEEBLY INTERACTING WITH LIGHT AND OTHER PARTICLES (NEUTRAL, COLOURLESS), AND HAS THE RIGHT ENERGY DENSITY TODAY IT CAN BE THE DARK MATTER
- IT TURNS OUT THAT AN LSP (NEUTRALINO, SNEUTRINO) SATISFIES THESE PROPERTIES AND WITH THE MASS ~ 100 GeV HAS THE RIGHT ENERGY DENSITY (WIMP MIRACLE)

SUSY DARK MATTER

 EARLY UNIVERSE ALL SUSY AND SM PARTICLES IN THERMAL EQUILIBRIUM,

 $\Gamma > H$

- AS PARTICLES BECOME NON-RELATIVISTIC THEY TEND TO ANNIHILATE AND DISAPPEAR (HEAVY QUARKS, MUONS, TAU, HIGGS, SUSY PARTICLES)
- ONLY THE LIGHTEST SURVIVE (ELECTRON; u, d → p, n; PHOTON, LIGHT NEUTRINOS, LSP)

 SOME LIGHTEST PARTICLES GO OUT OF EQUILIBRIUM WHEN THEY ARE RELATIVISTIC (LIGHT NEUTRINOS) AND SOME AFTER THEY BECOME NON-RELATIVISTIC (ELECTRON, n, p, LSP)

 $\Gamma = H$ (FREEZE OUT CONDITION)

AFTER OUT OF EQUILIBRIUM, n ~ 1/R³, Y=n/s FROZEN

$$\rho_0 = m \, n_0 = m \, n_{eq} \frac{R_{eq}^3}{R_0^3}$$

$$= m \, n(T_{eq}) \frac{T_0^3}{T_{eq}^3}$$

KNOWING T_{eq} IS IMPORTANT. OBTAIN IT FROM

$$\Gamma = n < \sigma v > = H$$

 < .. > IS FOR THERMALLY AVERAGED CROSS SECTION

WHEN A SPECIES BECOMES NON-RELATIVISTIC, n ~ exp(-m/T) AND σ FALL, AND Γ < H

• FOR THE LSP, WE FIND $T_{eq} = m/20$

(WEAK INTERACTIONS. FOR ELECTRON IT IS m/10⁶ AND FOR PROTON IT IS m/10⁹)

• FOR THE LSP, WE FIND $T_{eq} = m/20$

$$\rho = m \, n(T_{eq}) \frac{T_0^3}{T_{eq}^3}$$

$$n(T) = g\left(\frac{mT}{2\pi}\right)^{3/2} e^{-m/T}$$

- FOR m ~ 100 GeV, $ho_0=
 ho_{DM}$
- WIMP MIRACLE

CANDIDATE SUSY DARK MATTER

- NEUTRALINOS (LIGHTEST COMBO OF WINO, BINO, 2 NEUTRAL HIGGSINOS)
- SNEUTRINOS
- m ~ 100 GeV; WIMP MIRACLE
- NEUTRALINO NOT SEEN YET (MODEL DEPENDENT)
- SNEUTRINOCURRENTLY RULED OUT IN MSSM

CANDIDATE SUSY DARK MATTER

GRAVITINO

VERY WEAKLY COUPLED, DIFFICULT TO DETECT; CREATED THROUGH DECAY OF NLSP AS NOT THERMAL IN EARLY UNIV DUE TO VERY WEAK COUPLING, m ~ eV

AXINO

CREATED THROUGH THERMAL SCATTERING OF PARTICLES (LIKE GRAVITINO) OR OUT OF EQM DECAY OF NLSP

m ~ keV - TeV

SUMMARY

1. POPULAR MODELS OF GENERATING THE MATTER-ANTIMATTER ASYMMETRY OF THE UNIVERSE REQUIRE A LARGE REHEAT TEMPERATURE AFTER INFLATION

BUT THAT GENERATES TOO MANY GRAVITINOS IN THE UNIVERSE

COSMOLOGISTS ARE LOOKING FOR MECHANISMS TO ENHANCE NEUTRINO ABUNDANCE/SUPPRESS GRAVITINO ABUNDANCE

SUMMARY

2. SUSY FLAT DIRECTIONS CAN

GENERATE THE MATTER ANTIMATTER ASYMMETRY OF THE UNIVERSE (AFFLECK-DINE BARYOGENESIS),

SOLVE OR AGGRAVATE THE GRAVITINO PROBLEM

GENERATE PRIMORDIAL MAGNETIC FIELDS (DETAILS OF THE SUSY MODEL)

3. SUSY DARK MATTER – NEUTRALINOS, SNEUTRINOS, GRAVITINOS, AXINOS