11-d Sugra
(M)

\[\text{D=10} \quad \text{IIA} \quad \text{IIB} \quad \text{E}_8 \times \text{E}_8 \quad \text{SO(32)} \leftrightarrow \text{I} \]

D=9

More such equivalence relations exist.
Introduction to Calabi-Yau manifolds:

Ref: Complex manifolds without potential theory (S.S. Chern)

Real k-dimensional manifold: Covered by coordinate charts \(\{ U_i \} \). - open sets.

On each \(U_i \), choose coordinates:
\[
(y^{(i)}_1, ..., y^{(i)}_k) \quad y^{(i)}_j < 1
\]

On \(U_i \cap U_j \)
\[
y^m_{(i)} = f^m_{(i)}(y^{(i)}_{(j)}) \quad 1 \leq m \leq k
\]

to some function.

A 2n-dimensional real manifold is a complex manifold if we can choose \(n \) complex coordinates \(z^{(i)}_1, ..., z^{(i)}_n \) on each coordinate chart \(U_i \) such that on \(U_i \cap U_j \)
\[
z^m_{(i)} = f^m_{(i)}(z^{(i)}_{(j)}) \quad 1 \leq m \leq n
\]

complex analytic function.
Complex structure \mathbf{E}: Multiplication by i

on the tangent space:

$$\frac{\partial}{\partial z^m} (x^i) \rightarrow -i \frac{\partial}{\partial z^m} (x^i) \quad m = 1, \ldots, n.$$

On $U_i \cap U_j$:

$$\frac{\partial}{\partial z^m} (x^i) \rightarrow i \frac{\partial}{\partial z^m} (x^i),$$

$$\frac{\partial}{\partial \bar{z}^m} (x^i) \rightarrow \frac{\partial}{\partial \bar{z}^m} (x^i).$$

(Would not be true if $\bar{\mathbb{R}}$ is a \mathbb{C} of $\mathbb{C}(i)$ and $\mathbb{C}(i)$.)

Translated to the real coordinates J is a $2n \times 2n$ matrix satisfying:

1. $J^2 = -1$

2. A differential eq. (reflection of Cauchy-Riemann condition)
Example: \(z = x + iy \)
\[x = \frac{z + \bar{z}}{2}, \quad y = \frac{z - \bar{z}}{2i} \]

\[
\frac{\partial}{\partial x} = \frac{\partial}{\partial z} = \frac{1}{2} \left(\frac{\partial}{\partial x} - \frac{i}{\partial y} \right),
\quad \frac{\partial}{\partial y} = \frac{\partial}{\partial \bar{z}} = \frac{1}{2} \left(\frac{\partial}{\partial y} - \frac{i}{\partial x} \right)
\]

\[
\begin{bmatrix}
\frac{\partial}{\partial x} \\
\frac{\partial}{\partial y}
\end{bmatrix}
\rightarrow
\begin{bmatrix}
0 & 1 \\
1 & 0
\end{bmatrix}
\begin{bmatrix}
\frac{\partial}{\partial z} \\
\frac{\partial}{\partial \bar{z}}
\end{bmatrix}
\]

\[J \]

Note: Same real manifold may admit different complex structures.

Example: Two dimensional torus \(T^2 \).
\[
(y', y^2) = (y' + 2\pi, y^2) = (y', y^2 + 2\pi).
\]

One choice: \(z = y' + iy^2 \).

\[z \equiv z + i \equiv z + i
\]

General choice: \(z = y' + r y^2 \)

\[\text{Im} z > 0. \]

Example calculate \(J \).
Two manifolds which are identical as real manifolds may not be identical as complex manifolds.

Complex topology is more refined.

Metric on complex manifold \(M \):

\[
\mathrm{d}s^2 = g_{\alpha \overline{\beta}} \mathrm{d}z^\alpha \mathrm{d}\overline{z}^{\overline{\beta}} + g_{\alpha \beta} \mathrm{d}z^\alpha \mathrm{d}z^\beta
\]

Reality of \(\mathrm{d}s^2 \):

\[
\exists \ g_{\alpha \beta}^* = g_{\beta \alpha}^* , \ g_{\alpha \overline{\beta}}^* = g_{\overline{\beta} \alpha}^*
\]

Hermitean metric: \(g_{\alpha \beta} = 0 = g_{\overline{\beta} \alpha} \)

Kahler metric: Hermitean with

\[
g_{\alpha \overline{\beta}} = 2 \cdot \mathrm{d}z^\alpha \mathrm{d}\overline{z}^{\overline{\beta}} K
\]

on each coordinate chart.

On the overlap \(U_i \cap U_j \):

\[
K_i (\overline{z}_i^{(i)}, \overline{z}_i^{(j)}) = K_i (\overline{z}_i^{(j)}, \overline{z}_i^{(i)}) + f_{ij} (\overline{z}_i^{(j)}) + g_{ij} (\overline{z}_i^{(j)})
\]
Notion of holonomy:
Take a point \(P \in M \).

\(C \): a closed curve in \(M \) passing through \(P \).

1. Take an arbitrary \(2n \) dimensional vector \(\vec{a} \) in the tangent space at \(P \).
2. Parallel transport it around \(C \).
 - new vector \(\vec{a}' = R(c) \vec{a} \).
 - \(2n \times 2n \) matrix.

On Riemannian manifold \(\mathbb{R}^{2n} \):
\(R(c) \in SO(2n) \).

Collection of \(R(c) \) for all possible \(C \) passing through \(C \) form a group under multiplication.

\(C, C' \): closed curves passing through \(C \).
\(C \circ C' \): new closed curve that first goes along \(C' \) then along \(C \).
\(R(c) \ast R(c') = R(c \cdot c') \)

- A closed curve traversing \(c \) in opposite orientation.

\[R(c) \ast R(c^{-1}) = R(c \cdot c^{-1}) = I \]

B Collection of \(R(c) \): Holonomy group \(G \).

\(G \) is a subgroup of \(SO(2n) \).

\(\ast \) independent of \(P \).

[Transport from \(P \) to \(P' \), then along \(C \), then back \(\ast \) to \(P' \) along the same curve.

\(\ast \) conjugation]

For a Kahler metric on a complex \(n \)-dimensional manifold:

\(G = U(n) \subset SO(2n) \).

\(\frac{\omega}{2\pi} \rightarrow U, \quad \frac{\partial}{\partial z} \rightarrow 0 \)}
Calabi–Yau manifold: Complex manifold which admit Kahler metric with $SU(n)$ holonomy $SU(n) \subset U(n)$.

Yau's theorem: Calabi–Yau manifolds admit One can show that $SU(n)$ holonomy \Rightarrow vanishing Ricci tensor.

\Rightarrow Satisfies Einstein's equation.

A Calabi–Yau manifold with a given complex structure typically admits a family of Kahler metrics with $SU(n)$ holonomy.

\Rightarrow Kahler moduli space.

Both will be described in more detail later.
A Calabi-Yau manifold, regarded as a real manifold, admits a family of complex structures. A complex structure moduli space.

Example of a CY manifold:

- Torus.

\[\mathbb{T} = \mathbb{T} + 1 = \mathbb{T} + \mathbb{T} \]

\[ds^2 = a |d\bar{z}|^2 \text{ is invariant under constant } \mathbb{Z} \rightarrow \mathbb{Z} + 1, \mathbb{Z} \rightarrow \mathbb{Z} + \mathbb{Z}. \]

Holonomy: Trivial. \(= \mathbb{SU}(1) \).

- \(K = a \mathbb{Z} \)

Kähler moduli space: One real dimensional parameterized by \(a \).

Complex structure moduli space: One complex dimensional parameterized by \(\tau \).
Note: A manifold being Calabi-Yau is a topological property.

Two complex manifolds are topologically the same if they can be mapped to each other by analytic change of coordinates.

Calabi-Yau manifold: A complex manifold that admits a Kähler metric with $SU(n)$ holonomy.

It admits many other metrics which are not of $SU(n)$ holonomy. No important since in full string theory the metric on Calabi-Yau that is needed is Kähler but not of $SU(n)$ holonomy.

Ricci tensor $\neq 0$ effect of higher derivative terms.
Homology and Cohomology

A k-dimensional submanifold C_k of M is called a k-cycle if

$$2C_k = 0.$$

The boundary of C_k, $0 = \text{empty set}$.

$$\partial(2C_k) = 0 \text{ always}.$$

C_k is called exact if

$$C_k = \partial B_{k+1}$$

for some $(k+1)$ dimensional subspace B_{k+1} of M.

Given 2 k-cycles C_k, \tilde{C}_k they are declared to be equivalent if

$$C_k = \tilde{C}_k + \partial B_{k+1}$$

for some B_{k+1}.

$H_k(\mathbb{Z})$: Integer cohomology π_k of equivalent classes of C_k.

$H_k(\mathbb{Z})$: group under addition.

If $C_k, \overline{C}_k \in H_k(\mathbb{Z})$ then

$C_k + \overline{C}_k = C_k \cup \overline{C}_k \in H_k(\mathbb{Z})$

$-C_k = C_k$ in opposite orientation.

Note: $H_k(\mathbb{Z})$ may contain element A_k such that $nA_k = 0$ for some integer n.

Example: $M = 2$-dim. sphere with diametrically opposite points identified.

A curve C connecting a point P with antipodal point P' has no boundary and is not contractible.

A non-trivial element of $H_k(\mathbb{Z})$.

But going around the point twice makes it contractible.

A trivial element of $H_k(\mathbb{Z})$.
Real/complex homology: $H_k(R), H_k(C)$

- A vector space consisting of formal sums of k-cycles with real/complex coefficients.

$$A = \sum_k x_k A_k, \quad A_k: \text{k-cycle, } x_k \in \mathbb{R}, \mathbb{C}$$

Equivalence relation:

$$A \equiv B \iff A = B + \sum_j \beta_j \partial B_j$$

$E \subseteq \mathbb{R}$ or $E \subseteq \mathbb{C}$ subspace of M.

Note: If nc is contractible then $nc = 2B$

$$c = \frac{1}{n} 2B$$

C is a trivial element of $H_k(R)$ and $H_k(C)$.