Dielectric effect

N D0-brane in 4-form flux $F^{(4)}_{ij} = F_{ijk}$

Scalars Φ^i: $N \times N$ matrices.

Effective potential:

$$V = C \left[-Tr\left(\left[\Phi^i, \Phi^j\right]^2\right) - i \sum \lambda F_{ijk} Tr\left(\left[\Phi^k, \Phi^i\Phi^j\Phi^k\right]\right) \right]$$

E_{ij} of motion:

$$[\Phi^i, \Phi^j] = -\frac{3}{4} i \lambda F_{ijk} \Phi^k$$

Solutions: $\Phi^i = -\frac{3}{8} i \lambda f J_i$

$$[J_i, J_j] = 2 i \epsilon_{ijk} J_k$$

J_i: SU(2) representation matrices.

Could be trivial ($\Phi^i = 0$, reducible or irreducible?)

Lowest energy comes from choosing $\Phi^i \propto$ irreducible matrix of rank N.

$$i = \frac{N-1}{2}$$
Physical interpretation:

- Spherical D2-brane carrying gauge field strength F_{ij} to produce D0 charge N.

Consider such a D2-brane of radius R.

$$V(R) = 4\pi T_2 \sqrt{R^4 + a^2 N^2} - b f R^3$$

D2-brane tension T_0 constant term

$$\geq 4\pi T_2 \left(a N + \frac{R^4}{2an} \right) - b f R^3$$

$$4\pi T_2 a = T_0$$

D0-brane mass

$$V(R) = N T_0 + \phi a R^4 - b f R^3$$

Extremum at $R = 0$

$$R = \frac{3bf}{4n}$$

Lesser energy.

D2-brane puffs up & carries D0-charge.
This can be generalized to other branes by analogy.

D3 brane in 7-form flux

\[F^{(7)}_{ijklm} = F^{(3)}_{k} \perp D3 \]

\[\Rightarrow \text{Put up D5 along a 2-sphere in } ijk \text{ direction.} \perp D3 \& klm \]

S-Dual version:

D3 in \(H_{k} \)

NS-5 wrapped along a 2-sphere \(\perp D3 \) and \((k)lm \) direction.

In general if D3 has \(I \) fluxes

\(\Rightarrow \) stuff up in directions \(\perp \) to the largest 3-form flux.
Recall that in KKLT one needed to place D3 at a place with large warping in order to reduce D3 tension.

- Uses Klebanov-Strassler throat.

Local geometry ~ comifold:

\[ds^2 = dz^2 + \sum_{i=1}^{2} \delta_i dz^2 + (x^2 + \delta_i x^2) ds_i^2 \]

all inside CY3.

\(\bullet \) A-cycle: \(R_3 \).

B-cycle: 1 to \(\phi \) (along \(\delta_i, \theta_i \phi \))

Put \(M \) units of \(F_3 \) flux through A-cycle.

\(K \) units of \(H_3 \) flux through B-cycle.

\(M \ll K \)

\(\exists \) size of \(S^3 \sim \exp(-2\pi K/M \phi) \)

\(1 \) A-cycle.

Small.

D3-brane have lowest energy at the tip of the comifold \(r=0 \).
1 flux: M unit of F_3 along A

K units of H_3 along B

works.

$D_3 \to NS-5$ wrapped on an S^2

+ B cycle

inside A-cycle

S^2 metric:

$$ds^2 + \sin^2 \theta \, d\Omega_2$$

Fixed $\theta \equiv S^2$.

θ has to be determined dynamically for

extremisation of the potential.

S SUSY vacuum:

$$KM = \text{const.} + \# \text{ of } D3\text{-brane}$$

$k \to k-1 \Rightarrow$

$\text{const}(k-1) M = \text{const.} + \# \text{ of } D3\text{-branes}$

new $\# \text{ of } D3\text{-branes} = (M-k)$

\to SUSY config.
One can calculate the potential \(V(\phi) \).

Result: \(b < c M^4 \)

False vacuum:
- \(\phi_1 \)
- \(\phi_2 \)

True vacuum:
- Puffed up NS-5 carrying D3 charge
- \(\phi_2 = \phi_f \) D3 charge has gone.

For some choice of parameters:

\[\phi = \phi' \]

Interpolation: \(\phi \) Changes from \(\phi_1 = 0 \) to

\[\phi_2 = \pi \]

5-brane wrapping \(S^3 \rightarrow A\)-cycle.

\[\rightarrow \phi \rightarrow \phi + 1 \]

Final decay rate:

\[\text{exp} \left(-\frac{27 b_0 95 M^6}{512 \pi^2 \phi^3} \right) \]

\[b_0 = 0.93266 \]