
Problem Set 1: Date Due: October 4, 2020

1. Consider the operator

X̂(t) =
∫
d3rΨ†(t, ~r )xΨ(t, ~r )

in the second quantized Schrodinger field theory describing a system of
identical bosons. Ψ denotes the field variable and Ψ† denotes its her-
mitian conjugate. x denotes the first component of ~r, i.e. ~r = (x, y, z).

(a) Let ~a and ~b be two vectors:

~a = (ax, ay, az), ~b = (bx, by, bz)

Show that the states

Ψ†(t,~a )|0〉, Ψ†(t,~a )Ψ†(t,~b )|0〉

are eigenstates of X̂(t). Find the eigenvalues. 5

(b) Now consider the operator

P̂ (t) = −ih̄
∫
d3rΨ†(t, ~r )

∂Ψ(t, ~r )

∂x

in the same theory. Find its eigenstates within one and two par-
ticle sectors and write down the eigenvalues. 5
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Problem Set 2: Date Due: October 11, 2020

We have set h̄ = 1, c = 1

1. Consider a scalar field theory described by the action

S =
∫
dt
∫
d3x

[
1

2
(∂tφ)2 − 1

2
(~∇φ)2 − 1

2
m2φ2

]
However, the x1 direction, instead of being infinite in extent, is taken
to be periodic with period L. In effect this means that the field φ as
well as its conjugate momenta must be periodic under x1 → x1 + L.

Find the energy eigenstates and the corresponding eigenvalues. (Energy
is to be measured relative to the vacuum of the theory, i.e. the vacuum
by definition must have zero energy.)

Do the states have interpretation as a set of particles? In particular
what interpretation do the finite energy states have in the L→ 0 limit?

10

2. Consider a scalar field theory described by the action

S =
∫
dt
∫
d3x

[
1

2
(∂tφ)2 − 1

2
(~∇φ)2 − α

2
(x1)2φ2 +

√
α

2
φ2 − 1

2
m2φ2

]

where α is a constant. Find the energy eigenstates and the correspond-
ing eigenvalues. (Energy is to be measured relative to the vacuum of
the theory, i.e. the vacuum by definition must have zero energy.)

Do the states have interpretation as a set of particles? In particular
what interpretation do the finite energy states have in the α → ∞
limit?

10
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Problem Set 3: Date Due: October 18, 2020

1. Consider a classical field theory of a scalar field φ with the action:

S = K
∫
d4xφ22 φ

where K is a constant,

2 = ηµν
∂

∂xµ
∂

∂xν
,

and 22 ≡ 22.

Find expressions for the total energy and total momentum of the sys-
tem. 10

2. Consider a classical particle moving in one dimension, described by the
action

S =
∫ ∞
−∞

dt
∫ ∞
−∞

dt′ F (t− t′) q(t) q(t′) (1)

where t denotes time, q denotes the coordinate of the particle, and
F (t− t′) is some given function of (t− t′) with the property that

F (t− t′) = F (t′ − t) .

Furthermore suppose that F (t− t′) goes to zero rapidly as |t− t′| → ∞.

(a) Find the equation of motion of the particle by requiring that δS =
0 under any variation δq(t) that vanishes as t→ ±∞. 3

(b) Show that the problem has time translation symmetry under which

q(t)→ q̃(t) = q(t+ c)

for any constant c. 2

(c) Find an expression for the conserved quantity Q(t) associated with
time translation symmetry. This expression must be such that
the dependence of the quantity Q(t) at time t on q(t′) will fall off
rapidly as |t− t′| becomes large. 5

P.T.O.

3



(d) Show that Q(t) defined this way is conserved when equation of
motion is satisfied. 5

(e) Find a choice of F (t − t′) for which the action given in eq.(1)
reduces to the action of a harmonic oscillator

S =
∫
dt

1

2
m

(
dq

dt

)2

− 1

2
Kq2


where m and K are constants. Check that the expression for the
conserved quantity that you have found reduces to the standard
expression for the total energy of the harmonic oscillator for this
choice of F (t− t′). 5

Note: You are allowed to use δ function and its derivatives in
constructing F .

Note: You can treat this system using the same method that we devel-
oped for classical field theory, by regarding this as a field theory in 0
space and 1 time dimensions, interpreting q(t) as the field.
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Problem Set 4: Date Due: October 25, 2020 marks: 10+10

1. Consider the classical field theory describing the Schrodinger equation
of a free non-relativistic particle. The corresponding action is

S =
∫
dt
∫
d3xΨ∗(~x, t)

[
i
∂

∂t
+

1

2m
~∇2

]
Ψ(~x, t)

Since this describes a non-relativistic particle, naively we would expect
that the action should be invariant under a Galilean transformation of
the form:

Ψ̃(~x, t) = Ψ(~x− ~vt, t)
where ~v is some fixed vector. Check that this is not a symmetry of the
action.

Next try to modify the transformation to:

Ψ̃(~x, t) = eiφ(~v,~x,t) Ψ(~x− ~vt, t)
where φ(~v, ~x, t) is a phase factor. Show that for an appropriate choice
of φ(~v, ~x, t) we get a symmetry.

Next take ~v to be small to construct an infinitesimal symmetry transfor-
mation, and find the conserved charges associated with this symmetry.

2. Consider the non-relativistic Schrodinger field theory in the presence
of a central potential V (~x) where V depends only on the magnitude |~x|
of ~x. The corresponding action is:

S =
∫
dt
∫
d3xΨ∗(~x, t)

[
i
∂

∂t
+

1

2m
~∇2 − V (~x)

]
Ψ(~x, t)

Show that the action is invariant under the transformation:

Ψ̃(~x, t) = Ψ(R~x, t)

where R is a 3× 3 rotation matrix.

Now consider the infinitesimal version of this symmetry where:

Rij = δij + εωij

ω being an arbitrary 3 × 3 anti-symmetric matrix and ε being an in-
finitesimal parameter. Find expressions for the conserved charges as-
sociated with these symmetry transformations.
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Problem Set 5: Date Due: November 15, 2020

1. Consider the harmonic oscillator with Hamiltoniam:

1

2
p2 +

1

2
κ2q2

where q and p are conjugate coordinate and momentum variables. Let
|0〉 denote the ground state of the theory. Calculate

∆F (t1, t2) = 〈0|T (q(t1) q(t2))|0〉

where T denotes time ordering. 5

2. Now add to the above Hamiltonian the interaction term:

Hint =
λ

4!
q4

Let |Ω〉 denote the ground state of this theory. Calculate

G(t1, t2) = 〈Ω|T (q(t1) q(t2))|Ω〉

to order λ. Please try to carry out any integral that you might en-
counter, paying due attention to the iε prescription and the order of
limits. 5

Optional problems

1. Extend the calculation in problem 2 above to order λ2.

2. Consider the action:

S =
∫
d4 x

[
−1

2
ηµν∂µφ∂νφ+

1

2
m2φ2 − λ

4!
φ4

]

Note that the coefficient of φ2 has opposite sign compared to what we
have considered before. In this case the perturbation theory we have
developed does not work since the unperturbed Hamiltonian, contain-
ing quadratic terms in the fields and the conjugate momenta, does not
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have energy bounded from below. Instead we use the fact that the
potential term

V (φ) = −1

2
m2 φ2 +

λ

4!
φ4

has a pair of minima at

φ = ±a, a =
√

6m2/λ .

Since the two minima are equivalent (due to φ→ −φ symmetry of the
action) we can focus on the minima at φ = a. We now define:

χ = φ− a

and express the original action in terms of χ:

S =
∫
d4 x

[
−1

2
ηµν∂µχ∂νχ+

1

2
m2(χ+ a)2 − λ

4!
(χ+ a)4

]
.

(a) Show that the Hamiltonian derived from the action, when ex-
panded in powers of χ has the form

H = H0 +Hint

where H0 contains terms quadratic in χ, and has the correct sign
of the χ2 term so that it is bounded from below. Hint can be
treated using perturbation theory of the kind we have discussed.

In particular, check that the Hamiltonian has no term linear in χ.
If we had such terms then we shall not have regular perturbation
expansion of the type we discussed. For this it is important that
a corresponds to the minimum of V (φ). (You can throw away the
constant term in H).

(b) Now note that the original action has a symmetry under φ →
φ̃ = −φ. Using φ = a + χ and φ̃ = a + χ̃, this translates to the
transformation

χ→ χ̃ = −2 a− χ
Show that this symmetry does not exist in the Green’s function,
e.g.

〈Ω|T (χ̃(x1) χ̃(x2))|Ω〉 6= 〈Ω|T (χ(x1)χ(x2))|Ω〉

7



It is enough to show that the leading term in the expansion in
powers of λ fails to respect this symmetry.

This demonstrates that the φ → −φ symmetry is spontaneously
broken.
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Problem Set 6: Date Due: December 13, 2020

1. Consider a scalar field theory with action:

−1

2

∫
d4x

[
ηµν∂µφ∂νφ+m2φ2

]
− λ

4!

∫
d4xφ4(x)

where λ is a constant.

(a) Calculate the wave-function renormalization constant Z and the
physical mass mp to order λ. 5

(b) Calculate the complete S-matrix element S(~p1, ~p2;~k1, ~k2) for a pair

of incoming particles of momenta ~k1 and ~k2 to scatter into a pair
of outgoing particles of momenta ~p1 and ~p2, to order λ2. You can
assume that ~p1 6= ~k1, ~k2 and ~p2 6= ~k1, ~k2. 10

You do not need to carry out any loop momentum integration in ei-
ther of these problems. You can give the result as integrals over loop
momenta.

Optional problem

1. Consider a (3+1) dimensional quantum field theory of a single scalar
field φ with action∫

d4x
[
−1

2
ηµν ∂µφ∂νφ−

1

2
m2φ2 − λφ2~∇φ · ~∇φ

]

where ~∇φ denotes gradient in the spatial directions.

Write down the expression for

〈Ω|T (φ(x1)φ(x2)φ(x3)φ(x4))|Ω〉

to order λ2. Here |Ω〉 denotes the ground state of the hamiltonian.

In this calculation you can only use the contribution from the connected
diagrams. Also you do not need to evaluate any integral, but express
the result as integrals.
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Problem set 7: Date due: December 20, 2020

1. Consider the lagrangian of a scalar field theory with φ3 interaction:

L = −1

2

∫
d3r

[
ηµν∂µφ∂νφ+m2φ2

]
− g

3!

∫
d3r φ3(t, ~r)

where g is a constant. The corresponding Hamiltonian has energy
unbounded from below, but we shall ignore this problem and work in
a perturbation expansion in g.

(a) Calculate the complete S-matrix element S(~p1, ~p2;~k1, ~k2) for a pair

of incoming particles of momenta ~k1 and ~k2 to scatter into a pair
of outgoing particles of momenta ~p1 and ~p2, to order g2. 8

(a) Using this S-matrix element, calculate the differential cross section(
dσ
dΩ

)
cm

in the center of mass frame for two incoming particles of

momenta ~k and −~k to go into two outgoing particles of momenta
~p and −~p, as a function of the angle θ between ~k and ~p. 7

Here dΩ = sin θdθdφ is the solid angle projected at the origin by the
angular range between θ and θ + dθ and between φ and φ + dφ. θ, φ
are the polar and azimuthal angles in the spherical polar coordinate
system.

Optional problem

1. Consider the lagrangian of a free scalar field theory in (3+1) dimen-
sions:

L = −1

2

∫
d3r

[
ηµν∂µφ∂νφ+m2φ2

]
Now introduce a new field χ through the relation:

φ = χ+
1

2
λχ2

(a) Express the lagrangian in terms of χ and its derivatives.

(b) Express the momentum Π conjugate to χ in terms of χ and its
derivatives.
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(c) Construct the Hamiltonian in terms of χ and Π.

(d) Calculate the three and four point correlation functions:

〈0|T (χ(x1)χ(x2)χ(x3))|0〉

and
〈0|T (χ(x1)χ(x2)χ(x3)χ(x4))|0〉

to order λ and λ2 respectively.

(e) Show that although the four point correlation function is non-zero,

the S-matrix S(~p1, ~p2|~k1, ~k2) for the χ-particle vanishes.
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Problem set 8: Date due: December 28, 2020

1. Consider free electrodynamics with action

S = −1

4

3∑
µ,ν=0

∫
d4xFµν(x)F µν(x) , Fµν = ∂µAν − ∂νAµ

In this theory calculate∫
d4x e−ik·(x−y) 〈0|T (Fµν(x)Fρσ(y)) |0〉

where T denotes time ordering and |0〉 denotes the ground state of the
theory.

Please simplify the expression to the extent possible. The final answer
should be a function of k. 10
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Problem set 9: Date due: January 16, 2020

1. Consider the field theory with action

S =
3∑

µ,ν=0

∫
d4x

[
−1

4
FµνF

µν + ψ̄(iγµ∂µ −m)ψ − eAµψ̄γµψ
]

where Fµν = ∂µAν − ∂νAµ. Calculate the S-matrix element, to order

e2, for an e−γ pair of momentum ~p1 and ~k1 and spin states r1 and a1,
to go into an e−γ pair of momentum ~p2 and ~k2 and spin states s2 and
a2, respectively. Here e− denotes the particle associated with the field
ψ and γ denotes the particle associated with the field Aµ. 15
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Problem set 10: Date due: January 20, 2020

1. Consider the field theory with action

S =
3∑

µ,ν=0

∫
d4x

[
−1

4
FµνF

µν + ψ̄(iγµ∂µ −m)ψ − eAµψ̄γµψ
]

where Fµν = ∂µAν − ∂νAµ.

(a) Calculate the S-matrix element, to order e2, for an e−e+ pair of
momentum ~p1 and ~p2 and helicities r1 and r2, to go into an e−e+

pair of momentum ~p1 and ~p2 and helicities s1 and s2, respectively.
Here e− and e+ denote respectively the particle and anti-particle
associated with the field ψ. 15

(b) Calculate the total cross section of this process by integrating over
the final state momenta and summing over the spin states of the
final state particles. Try to simplify your result using identities
involving uα’s and vα’s. 15

Optional problem

1. Consider a field theory involving a scalar field φ and a Dirac field ψ,
described by the action:

S =
∫
dt
∫
d3x

[
−1

2
ηµν∂µφ∂νφ−

1

2
M2φ2 + ψ̄(iγµ∂µ −m)ψ + gψ̄ψφ

]

Calculate the S-matrix element for two scalar particles, carrying mo-
menta ~p1 and ~p2 to go into an e−e+ pair carrying momenta ~k1 and
~k2, and helicities s1 and s2 respectively, to order g2. (Here e− and e+

represent particle and anti-particle associated with the Dirac field ψ.)
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