"Rubric" lattice in any dimension.

D = 1:

D = 2:
Square

Dynamical variables

'Spin' on each lattice site

\[E(p_1, \ldots, p_N) = -J \sum_{i<j} S_i \cdot S_j - K \sum S_i \]

implies nearest neighbour pairs

J, K constants

Example

1. \[D = 1 \]

\[E = -J \sum_{i=1}^{N} S_i \cdot S_{i+1} - K \sum_{i=1}^{N} S_i \]

2. \[D = 2 \]

\[E = -J \sum_{i,j=1}^{N} S_{ij} \]

To make it more symmetric

\[-\frac{J}{2} \sum_{i,j=1}^{N} (S_i S_j + S_{i+1} S_{i+2}) \]

What do we mean by \(S_{N+1} \)?

\[\Rightarrow \text{Periodic boundary condition:} \]

\[S_{N+1} = S_1 \]

Periodic boundary makes calculations simpler

Could have written:

\[\sum_{i} S_i, S_{i-1} \]

\[+ \sum_{i} S_i, S_{i+1} \]

But under a shift of \(i \), the first sum will also be of the form \(\sum_i S_i, S_{i+1} \)
\[E = -\frac{J}{2} \sum_{i=1}^{N} \sum_{\beta=1}^{N} \left(S_{i}^{x} S_{i+1}^{x} + S_{i}^{y} S_{i+1}^{y} + S_{i}^{z} S_{i+1}^{z} \right) \]

- \[K \sum_{i=1}^{M} \sum_{\beta=1}^{N} \delta_{i,\beta} \]

Periodic boundary conditions:
\[S_{N+i}^{\beta} = S_{i}^{\beta} \]
\[S_{i}^{z}, S_{i+1}^{z} = S_{i}^{z} \]

Motivation:

> A Model for ferromagnetism.

Take a lattice & at each lattice site we have a magnetic dipole.

At \(i^{th} \) site, \(\vec{\mu}_{i} = \mu_{0} (\sin \Theta_{i} \cos \Phi_{i}, \sin \Theta_{i} \sin \Phi_{i}, \cos \Theta_{i}) \)

\[\vec{H} = \sum_{i} \left(\frac{\vec{B} \cdot \vec{\mu}_{i}}{2I} + \frac{\mu_{0}^{2}}{2I \sin^{2} \Theta_{i}} \right) - \alpha \sum_{i} \frac{\vec{\mu}_{i}}{\langle i | i \rangle} \]

- \[B . \sum \vec{\mu}_{i} \]

External magnetic field
\((0, 0, B) \)

\[Z = \sum_{i=1}^{N} (d_{0} \cdot d_{i} \cdot d_{0}, \Phi_{i} \cdot \Phi_{i}) e^{-\beta H} \]

\[= C (kT)^{N} \sum_{i=1}^{N} (d_{0} \cdot d_{i} \cdot \sin \Theta_{i}) e^{-\beta \mu_{0}^{2} / 2I} \]

\[+ \text{constant} \]
Approximation:
Replace the angular integration by a sum over two values: \(\theta = 0 \) and \(\theta = \pi \).

\[
\mathcal{Z} \to C(\mathbf{k}r)^N \sum_{s_i = \pm \frac{1}{2}, s = \pm \frac{1}{2}, \ldots, s = \pm 1} \exp(-i \mathbf{r} \cdot \mathbf{p})
\]

\[
H' = -a \mu_0^2 \sum s_i^2 + \sum B_i \sum x_i
\]

\[
\sum_{i=1}^N \frac{s_i + 1}{2}
\]

\[
E = -J \sum_{i=1}^N s_i A_{i+1} - K \sum_{i=1}^N A_i
\]

\[
Z = \sum_{s_1 = \pm 1} \sum_{s_2 = \pm 1} \cdots \sum_{s_N = \pm 1} \exp(i \mathbf{S} \cdot \mathbf{A} + \mathbf{S} \cdot \mathbf{B} + \mathbf{S} \cdot \mathbf{C})
\]

\[
\sum_{i=1}^N \frac{s_i + 1}{2}
\]

Analysis of one dimensional Ising model using model:

This may capture qualitative features of what is happening, but features like ferromagnetic should show up.
Define:
\[T_{s_{i+1}} = e^{\beta J s_i s_{i+1} + \beta K} (s_i + s_{i+1}) \]

We may write:
\[Z = \sum_{s_1} \sum_{s_2} \cdots \sum_{s_N} \prod_{i=1}^{N} e^{\beta J s_i s_{i+1} + \beta K} (s_i + s_{i+1}) \]
\[= \sum_{s_1} \sum_{s_2} \cdots \sum_{s_N} T_{s_1, s_2} T_{s_2, s_3} T_{s_3, s_4} \cdots T_{s_{N-1}, s_N} T_{s_N, s_1} \]

\(T_{s_{i+1}} \) can be thought of as a 2 \(\times \) 2 matrix:
\[\begin{pmatrix} 1 & s \pm 1 \pm s' \pm 1 \end{pmatrix} \]

\[\Rightarrow Z = T^N \quad \left(T^N \right)_{s=1, s'=1} \]

Here:
\[T = \begin{pmatrix} e^{\beta J + \beta K} & e^{-\beta F} \\ e^{-\beta F} & e^{\beta J - \beta K} \end{pmatrix} \]

It is called the transfer matrix.

\[\Rightarrow Z = \lambda_1^N + \lambda_2^N \quad \lambda_1, \lambda_2 \text{ are eigenvalues of } T. \]

Eigenvalue eqn:
\[(\lambda - e^{\beta J + \beta K}) (\lambda - e^{\beta J - \beta K}) - e^{-2\beta J} = 0 \]

Solve:
\[\lambda = e^{\beta J} \cosh \beta K \pm \sqrt{e^{2\beta J} \cosh^2 \beta K - 2 \sinh (2\beta J)} \]
\[= e^{\beta J} \sinh \beta K + e^{-2\beta J} \quad e^{2\beta J} \cosh^2 \beta K - e^{2\beta J} + e^{-2\beta J} \]

\[\geq 0 \]
→ Both eigenvalues are real.

\[Z = (\lambda_1^N + \lambda_2^N) \]

\[F = -kt \ln Z = -kt \ln (\lambda_1^N + \lambda_2^N) = -kt \ln \left(\lambda_1^N + (\rho \lambda_2)^N \right) \]

\[\lim_{n \to \infty} -kt \ln \lambda_1^N \]

\[\Rightarrow F \text{ is never singular.} \]

\[\Rightarrow \text{no phase transition} \]

Total magnetic moment

\[M = \mu_0 \sum_i x_i \]

\[\langle M \rangle = \frac{\sum \sum _{s_i = \pm 1} \sum _{s_j = \pm 1} - e^{-\beta E} \mu_0 \sum_i s_i}{\sum \sum _{s_i = \pm 1} \sum _{s_j = \pm 1} e^{-\beta E}} \]

\[Z = \sum \sum _{s_i = \pm 1} \sum _{s_j = \pm 1} e^{\beta \sum s_i + \rho \sum s_i} \]

Take \(\lambda_1 \) to be the bigger eigenvalue:

\[e^{\beta \gamma} \cosh \gamma \]

\[+ \frac{1}{2} e^{2 \beta \gamma} \cosh \gamma \sinh 2\beta \gamma \]

\[> 0 \]

Do no branch pt. from sheet.

Also argument of \(\log \) is always \(n \to \infty \) for total.
\[\frac{1}{2} \frac{\partial^2}{\partial K} = \beta \left(\sum_{i=1}^{N} s_i \right) = \frac{P}{\mu_0} \langle M \rangle \]

\[\langle M \rangle = \frac{\mu_0}{q} \frac{\partial}{\partial K} \ln Z = \frac{\partial F}{\partial K} = -\mu_0 \frac{\partial F}{\partial K} \]

\[F = -kT \ln Z \]
\[= -\frac{1}{\beta} \ln Z \]

Exercise: Show that

\[\langle M \rangle = \mu_0 N \frac{\sinh (\beta \mu_0)}{\sqrt{\cosh^2 \beta \mu_0 - 2 e^{-2\beta \mu_0} \sinh 2\beta \mu_0}} \]

Properties:

1. \(\langle M \rangle \rightarrow -\langle M \rangle \) under \(\beta \rightarrow -\beta \)

 \(k = \mu_0 \beta B \)

 (Magnetization flips sign on switching the mag. field in the opp. dirn.)

2. \(\langle M \rangle = 0 \) for \(\beta = 0 \) for any \(B \).

 There is no spontaneous magnetization

\[\lim_{K \rightarrow 0^+} \langle M \rangle = 0 \]

Suppose

\[\langle M \rangle = C \frac{\sinh \beta K}{\sinh \beta K} \]

\[\lim_{K \rightarrow 0^+} \langle M \rangle = C \]

\[\lim_{K \rightarrow 0^-} \langle M \rangle = -C \]

Exactly at \(k = 0 \), \(\langle M \rangle \) is ill-defined.

(This is the way you see spontaneous magnetization)
Equivalence of Ising model with other systems

Consider a cubic lattice.

\(s_i \) : variable associated with \(i \)th lattice site which can take two values \(s_i^{(1)}, s_i^{(2)} \).

Examples:
- Random alloy: a cubic lattice where the \(i \)th site may have an atom of type A or type B.
- Lattice gas: a cubic lattice where the \(i \)th site is either occupied or vacant.

\(\{ s_i \} \rightarrow \) labels a configuration

\[
E(\{ s_i \}) = \sum_{\langle ij \rangle} E^{(u)}(s_i, s_j) + \sum_{i} E^{(v)}(s_i)
\]

\(\rightarrow \) sum over nearest neighbours

We'll now map this to the Ising model.

Introduce a new lattice variable \(\pi_i \) for each site:

\[
\pi_i = \begin{cases} 1 & \text{for } s_i = s_i^{(1)} \\ -1 & \text{for } s_i = s_i^{(2)} \end{cases}
\]

\(\{ \pi_i \} \leftrightarrow \{ s_i \} \)
Consider a new function:

\[E(\delta_{i\gamma}) = -J \sum_{\langle i,j \rangle} \delta_{i,j} \delta_{\gamma} + \sum_i \delta_i + \text{constant} \]

\[= \sum_{\langle i,j \rangle} \left(-J \delta_i \delta_{\gamma} - \frac{k}{\hbar} (\delta_i + \delta_{\gamma}) \right) + \text{constant} \]

\[n \text{ number of nearest neighbours of a given atom} \]

\[\rho_k \sum_{\langle i,j \rangle} = \frac{K}{N} \sum_i \delta_i + \frac{k}{\hbar} \sum_{\langle i,j \rangle} \delta_i \delta_{\gamma} \]

\[\sum_{\langle i,j \rangle} E^{(0)}(\delta_{i\gamma}) = \frac{1}{N} \sum_{i,j} E^{(0)}(\delta_{i\gamma}) = \frac{1}{N} \sum_{i,j} \delta_i \delta_{\gamma} \]

\[= \frac{1}{N} \sum_{\langle i,j \rangle} \left(E^{(0)}(\delta_i) + E^{(0)}(\delta_{\gamma}) \right) \]

\[\sum_{\langle i,j \rangle} E^{(0)}(\delta_{i\gamma}) = \sum_{\langle i,j \rangle} \left(E^{(0)}(\delta_i) + E^{(0)}(\delta_{\gamma}) \right) \]

\[\text{magnetically it is spin under if each} \]

\[\text{we can choose } E^{(0)}(\delta, \delta) \]
Consider the Ising model energy:

$$E(\{\sigma_i\}) = -J \sum_{\langle i,j \rangle} \sigma_i \sigma_j + \sum_i h_i \sigma_i$$

$$= \sum_{\langle i,j \rangle} \left\{ -J \sigma_i \sigma_j - k_B \left(\beta_i + \beta_j \right) \right\}$$

$$\Rightarrow \sum_{\langle i,j \rangle} \left\{ -J \beta_i \beta_j - k_B (\beta_i + \beta_j) + A \right\}$$

Goal: Choose J, K & A such that the pair energy in the original model matches the pair energy in the Ising model.

1. \(\sigma_i = \sigma^{(1)}, \sigma_j = \sigma^{(1)} \Rightarrow s_i = 1, s_j = 1\)

 \(E^{(1)}(\sigma^{(1)}, \sigma^{(1)}) + \frac{k_B}{n} E^{(1)}(\sigma^{(1)}) = J - 2k_B h + A\)

2. \(\sigma_i = \sigma^{(1)}, \sigma_j = \sigma^{(2)} \Rightarrow s_i = 1, s_j = -1\)

 \(E^{(1)}(\sigma^{(1)}, \sigma^{(2)}) + \frac{1}{n} \sqrt{E^{(1)}(\sigma^{(1)}) + E^{(1)}(\sigma^{(2)})} = J + A\)

3. \(\sigma_i = \sigma^{(2)}, \sigma_j = \sigma^{(2)} \Rightarrow s_i = -1, s_j = -1\)

 \(E^{(1)}(\sigma^{(2)}, \sigma^{(2)}) + 2k_B E^{(1)}(\sigma^{(2)}) = -J + 2k_B h + A\)

\(\Rightarrow\) Solve for J, K & A.

This gives an exact map between the original model & Ising model.
A model in which the system is in a 2D lattice with periodic boundary conditions. The model is described by the following equations:

- S_i: spin at site i
- J: coupling constant
- K: external field

The model can be described in terms of a grand canonical ensemble with the partition function Z.

The total number of spins is fixed, and the system is described by the partition function Z.

Each site is fixed, and the system is described by the partition function Z.

Mathematical expressions are also included, such as:

- $Z = \sum_i e^{\beta S_i}$
- $\beta = \frac{1}{kT}$
- k: Boltzmann constant
- T: temperature

The model is further analyzed with different values of J and K, leading to different phases and behaviors.
\[Z = \sum_{\{A_{ij} = \pm 1\}} e^{-\beta E} \]
\[= \sum_{\{A_{ij} = \pm 1\}} \prod_{i=1}^{M} \exp \left\{ \beta J \sum_{\delta_{ij} \in \{\pm 1\}} \delta_{ij} \cdot \delta_{i+1,j} \right\} \]
\[+ \frac{1}{2} \beta J \sum_{\delta_{ij} \in \{\pm 1\}} \delta_{ij} \cdot \delta_{ij+1} \]
\[+ \frac{1}{2} \beta K \sum_{\delta_{ij} \in \{\pm 1\}} \delta_{ij} \cdot \delta_{j} \]

Suppose \(\vec{\sigma}, \vec{\sigma}' \) are two \(N \)-dimensional vectors.

\[\vec{\sigma} = (\sigma_1, \ldots, \sigma_N), \quad \vec{\sigma}' = (\sigma'_1, \ldots, \sigma'_N) \]

Define: \(T(\vec{\sigma}, \vec{\sigma}') = \exp \left\{ \beta J \sum_{\delta_{ij} \in \{\pm 1\}} \delta_{ij} \cdot \delta_{ij}' \right\} \)
\[+ \frac{1}{2} \beta J \sum_{\delta_{ij} \in \{\pm 1\}} (\sigma_i \sigma_i' + \sigma_j \sigma_j') \]
\[+ \frac{1}{2} \beta K \sum_{\delta_{ij} \in \{\pm 1\}} (\sigma_i' \sigma_i + \sigma_j' \sigma_j) \]

\[T(\vec{\sigma}, \vec{\sigma}') = T(\vec{\sigma}', \vec{\sigma}) \]

Define:

\[\vec{\sigma}^{(i)}: \text{\(N \)-dimensional vector for each} \]
\[\{\delta_{ij}^{(i)} = \pm 1\} \quad i=1, \ldots, M \]
\[\vec{\sigma}^{(i)} = (\sigma_1^{(i)}, \sigma_2^{(i)}, \ldots, \sigma_N^{(i)}) \]

Each \(\vec{\sigma}^{(i)} \) takes \(2^N \) values.
\[Z = \sum_{\{\sigma^{(\alpha)}\}} \prod_{i=1}^{M} T(\sigma^{(1)}, \sigma^{(i+1)}) \]

\[T(\sigma^{(1)}, \sigma^{(2)}) \cdot T(\sigma^{(2)}, \sigma^{(3)}) \cdot \cdots \cdot T(\sigma^{(M-1)}, \sigma^{(M)}) \cdot T(\sigma^{(M)}, \sigma^{(1)}) \]

(Each \(T \) can be thought of as a \(2^N \times 2^N \) matrix, hence each of \(\sigma^{(\alpha)} \) is as can take \(2^N \) values)

\[Z = \text{Tr}_T \left(T^M \right) \]

\(T \) a \(2^N \times 2^N \) matrix

\[Z = \sum_{\alpha} 2^M \]

\(\sum \) over eigenvalues

\[= \left(\lambda_{\text{max}} \right)^{\alpha} \left[1 + \sum_{\alpha} \left(\frac{\lambda_{\alpha}}{\lambda_{\text{max}}} \right)^M \right] \]

\(\sum \) over all \(\alpha \) except the maximum e.v.

\[F = -k T \ln Z \]

\[= -k T \ln \lambda_{\text{max}} + \ln \left(1 + \sum_{\alpha} \left(\frac{\lambda_{\alpha}}{\lambda_{\text{max}}} \right)^M \right) \]

\[\lim_{N \to \infty} -N k T \ln \lambda_{\text{max}} \]

Problem reduces to calculating the maximum eigenvalue of the transfer matrix.
The problem reduces to diagonalizing a matrix. Upon over f, the Jordan form is transformed into a matrix form of the problem.
Result for T_{max} (For $K = 0$)

Define $\phi = \beta \varphi$, $\Theta = \tan^{-1} e^{-2\phi}$

\[Y_k = \cosh^{-1} \left[\frac{\cosh 2\phi \cosh 2\Theta}{\cosh \tanh 2\phi \sinh 2\phi} \right] \]

$k = 0, 1, 2, \ldots, 2N - 1$

The positive value

\[T_{\text{max}} = \left(2 \sinh 2\beta \varphi \right)^{N/2} e^{\frac{1}{2} \left(\eta - \eta_1 + \eta_2 - \eta_3 \right) + \ldots + (-1)^{2N-1} \eta_N} \]

This is also N-dependent, there are N terms in the sum

\[Z = \text{Tr}(T^N) \]

T is a $2^N \times 2^N$ matrix

\[T(\sigma, \sigma') = \exp \left[\beta \sum_{j=1}^{N} \sigma_j \sigma_j' + \frac{1}{2} \beta J \sum_{j=1}^{N} \sigma_j \sigma_{j+1} + \alpha \sum_{j=1}^{N} \sigma_j \sigma_{j+1} \sigma_j' \right] \]

$\sigma = (\sigma_1, \ldots, \sigma_N)$, $\sigma' = (\sigma_1', \ldots, \sigma_N')$

$\sigma_i = \pm 1$, $\sigma_i' = \pm 1$
\[Z = \sum_{\mathcal{M}} \chi_{\mathcal{M}} \]

Eigenvalues of \(T \)

\[\chi_{\mathcal{M}} = -kT \chi_{\mathcal{M}} \]

\[-kT \ln \chi_{\mathcal{M}} = -M \frac{\chi_{\mathcal{M}}}{M+\alpha} \]

We need to find \(\chi_{\text{max}} \)

Result for \(\chi_{\text{max}} \) (This is for zero magnetic field):

Define \(\phi = \beta J \) and \(\alpha = e^{-2\phi} \)

\[\cosh V_k = \cosh (2\phi) \cosh (2\theta) - \cos \frac{2\pi k}{N} \frac{\sinh (2\phi)}{\sin (2\theta)} \]

\[\chi_k > 0 \]

\[\chi_{\text{max}} = \left[\frac{2 \sinh 2\phi J}{\sinh 2\phi J} \right]^{N/1} \cdot \frac{1}{N} \left(X_1 + X_2 + \ldots + X_N \right) \]

\[F = -MNkT \left[\frac{N}{2} \ln \left(\frac{2 \sinh 2\phi J}{\sinh 2\phi J} \right) + \frac{1}{2} \sum_{i=1}^{N} Y_{2i-1} \right] \]

\[= -\frac{1}{2} MNkT \left[\ln \left(\frac{2 \sinh 2\phi J}{\sinh 2\phi J} \right) + \frac{1}{N} \sum_{i=1}^{N} Y_{2i-1} \right] \]

For \(N \) large,

Cosh \(V_k \) will be a smooth function of \(k \) as \(\frac{k}{N} \) changes by unity. It changes very little.
Define \(U = \frac{c}{N} \)
\(i = NU \)

\[Y_{2i-1} = Y_{2(Nu-1)} - Y_{2Nu} \]

\[f = \frac{1}{N} \lim_{N \to \infty} \left[\ln \left(\frac{2 \sinh(2\beta J)}{2} \right) + \int_0^1 du Y_{2nu} \right] \]

\[\cosh Y_{2nu} = \cosh(2\phi) \cosh(2\phi) - \cos(2\pi N) \sinh(2\phi) \sinh(2\phi) \]

Once we write \(Y_{2nu} = \cosh^{-1}(\ldots) \), there is no \(N \)-dependence & we get a smooth \(f_N \).

Using model is independent under the interchange \(M \leftrightarrow N \); nothing for \(i \) depends on the ratio \(M/N \).

Ex. Show that

\[\int_0^1 du Y_{2nu} = \ln \left(\frac{2 \cosh^2(2\beta J)}{\sinh 2\beta J} \right) + \frac{1}{4\pi} \int_0^\infty dx \ln \left(\frac{4x^2}{(14 - x^2)^2} \right) \]

where

\[K = \frac{2}{\cosh(2\phi) \coth(2\phi)} \]
Average total energy \(\bar{E} = -\frac{\partial \beta}{\partial \beta} \ln 2 \)
\[= -\frac{\partial}{\partial \beta} (-\beta F) \]
\[= \frac{\partial}{\partial \beta} (\beta F) \times \text{MN} \]

\[e = \frac{\bar{E}}{\text{MN}} = \frac{\partial}{\partial \beta} (\beta F) \]

\(\triangleright \) Average energy per site (Av. energy/site)
\[f = -\beta T \ln (2 \cosh 2\beta J) + \frac{1}{2\pi} \int_0^T d\omega \frac{\partial}{\partial \beta} \frac{e^{i\omega\beta}}{\sqrt{1 - k^2 \sin^2 \omega}} \]

\(k \) depends on \(\beta \)

\[e = -J \operatorname{coth} (2\beta J) \left(1 + \frac{2}{\pi} K' K_1 (K) \right) \]

where \(K' = 2 + \tanh^2 (2\beta J) - 1 \), \(K^2 + (K')^2 = 1 \)

and \(K_1 (K) = \int_0^{\frac{T_1}{k}} \frac{d\omega}{\sqrt{1 - k^2 \sin^2 \omega}} \)

\[C = \frac{\partial e}{\partial T} \]

Specific heat per site
\[C = k \frac{2}{\pi} (\beta J \operatorname{coth} 2\beta J)^2 \left\{ 2K_1 (K) - 2E_1 (K) - (1 - K) (1/2 + K' K_1 (K)) \right\} \]

where \(E_1 (K) = \int_0^{T_1} d\omega \sqrt{1 - k^2 \sin^2 \omega} \)

let us analyze & see if there is any source of singularity at some finite temp. — we’ll analyze free energy & its derivatives
In $2 \cosh 2\beta_3$ doesn't have any singularity at exactly 0 & ∞.

If $|k| < 1$, $\sqrt{1-k^2}$ is never zero & we never get any singularity for the 2nd term of its derivatives.

There are no singularities in f or any of its derivatives if $|k| < 1$.

(We need to analyze functional dependence of k on T & see if $|k|$ can be 1 or more.)

$$K = \frac{2}{\cosh 2\phi \cosh 2\beta_3} = \frac{2 \sinh 2\phi}{\cosh^2 2\phi}$$

$$= \frac{4 \left(e^{2\beta_3} - e^{-2\beta_3} \right)}{(e^{2\beta_3} + e^{-2\beta_3})^2}$$

$$= \frac{4 \left(y - y^{-1} \right)}{(y + y^{-1})^2}$$

$\rightarrow 0$ as $y \rightarrow 1$

$\rightarrow 0$ as $y \rightarrow \infty$

Put $y = e^{2\beta_3}$

$1 \leq y < \infty$

Find the maximum of this function.

Answer: $y = \frac{\sqrt{2} + 1}{\sqrt{2} - 1}$

At the maximum, the function = 1

Critical point: T_c is given by $e^{2\beta_3} = \sqrt{\frac{2}{2} + 1}$
$K=1$ at $T=T_c$

Q. How does K behave near $T=T_c$?

i.e. near $y=y_c$?

Near $y=y_c$,

$$K \approx 1 - A(y-y_c)^2$$

$A > 0$ (since $K_n > 0$)

Also, K has a delta-like form, as $y \to y_c$; it'll also behave as a max, as a function of T.

1. f is non-singular.
2. $E_j(k)$ is non-singular.
3. $K_l = \frac{1}{\sqrt{1-k^2}}$ where $k = 1-\eta$ and η small

\[
\eta = \sqrt{1-k^2} = \sqrt{1-(1-2\eta^2) \sin^2 \varphi}
\]

4. $K_l(k) = \int_0^{\kappa \sqrt{2 \eta}} d\varphi$

We note that K_l diverges at $\varphi = \kappa$ but is small for $\kappa < \kappa_c$.

This divergent piece suggests a modification.
(Divergence comes from large t region in terms of the t variable) large contribution to the integral

\[\int \frac{e^{\sqrt{t} \eta}}{\sqrt{t}} \, dt \sim \ln \frac{1}{\xi t'} \frac{1}{\sqrt{\eta}} \]

\[k^1 k_1(k) \sim \ln \frac{1}{\sqrt{\eta}} + \text{finite as } \eta \to 0. \]

\[k^1 k_1(k) \sim \sqrt{\eta} \ln \frac{1}{\sqrt{\eta}} \to 0 \text{ as } \eta \to 0. \]

\[\therefore \text{ it has no divergence as } k \to 1. \]

\[C \sim \frac{2k}{\pi} \left\{ \frac{k_1 \cosh (2k_c J)}{2} \right\}^2 \frac{1}{\sqrt{\eta}} \]

\[+ \text{ finite \ as } \eta \to 0 \]

\[\sim C \sim \frac{2k}{\pi} \left\{ \frac{k_1 \cosh (2k_c J)'}{2} \right\}^2 \frac{1}{\sqrt{\eta}} \]

\[+ \text{ finite.} \]

This clearly is the sign that there is a transition cut-off.

There is one more thermal and the magnetic part of the system that gives an idea of the system fitting in place of spins, then.