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Basics

Generalities

N = 4 models
Spectrum of quarter BPS dyons in a class of four
dimensional N = 4 supersymmetric string theories is
reasonably well understood by now.

These include toroidally compactified heterotic string
theory, CHL models as well as asymmetric orbifolds of type
II string theories.

Method used for counting considers a specific description
of quarter BPS dyons.(Dijkgraaf-Verlinde-Verlinde, Strominger-Shih, David-Jatkar-Sen,

Dabholkar-Gaiotto-Nampuri)
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Basics

Generalities contd..

Motivation
This description does not give the most general charge
vector corresponding to a quarter BPS dyon.

While we expect the same counting formula to work for
more general quarter BPS dyons, it is important to
understand exactly how it works.

Aim of our work is to consider a more general charge
vector and see how the degeneracy formula takes these
dyons into account.

In what follows we will illustrate our results in terms of
heterotic string compactified on T 6.
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Heterotic string on T 6

Two Descriptions

First Description

We consider type IIB string theory on K 3× S1 × S̃1. We call
this to be the first description of the theory. A dyon is a specific
brane configuration in this theory.

Second Description

We consider heterotic string theory on T 4×S1× Ŝ1, we call this
to be the second description of the theory. A dyon in this theory
is denoted by a certain electric and magnetic charge vector.

These two descriptions are related by a chain of duality
transformations.
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Heterotic string on T 6

Duality chain

(
IIB

K 3× S̃1

)
−→
S

(
IIB

K 3× S̃1

)
−→
T

(
IIA

K 3× Ŝ1

)
−→
SS

(
Heterotic
T 4 × Ŝ1

)

Given any field configuration in the first description, we can
follow the duality chain and find the corresponding field
configuration in the second description.
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Heterotic string on T 6

Charge vector

The compactified theory has 28 U(1) gauge fields.

Any given state is characterised by 28 dimensional electric
and magnetic charge vectors, ~Q and ~P .

Q =



Q̂
k1

k2

k3

k4

k5

k6


P =



P̂
l1
l2
l3
l4
l5
l6


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Heterotic string on T 6

T-duality

T-duality symmetry is SO(6,22; Z ), and the T-duality
invariants are,

Q2 = QT LQ P2 = PT LP Q.P = QT LP,

where L is a 28× 28 matrix with (6,22) signature.
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Heterotic string on T 6

Special Charge vector

The degeneracy formula was computed using the charge
vectors (David,Sen)

Q =



0
0
0
0
k4

0
k6


P =



0
0
0
l3
l4
l5
0


They found the degeneracy of the states of the system as ,

d(Q,P) = f (
Q2

2
,
P2

2
+ 1,Q.P)
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Conventions

Classification
We shall use the second description of the theory to
classify charges as electric or magnetic.

An electrically charged state will correspond to an
elementary string state.

A magnetically charged state will correspond to a wrapped
NS 5 brane or KK monopole.

Electric/Magnetic charges appearing in the charge vector
are related to the asymptotic values of the gauge field
strength as,

F i
rt |∞ =

ki

r2 F i
θφ|∞ = lisinθ
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Conventions

Conventions Contd..

Normalisations

Coordinates ψ, y , χ are along S̃1,S1, Ŝ1 directions
respectively and are normalised to 2π

√
α′.

K3 volume is normalised to (2π
√
α′)4.

We choose α′ = 16.
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Generalisation

New Charges

Electric charge vector

The elements of the 28-dimensional electric charge vector
can be given the following interpretation in the second
description.

k3, k4 −→ momenta along Ŝ1 and S1 respectively,
k5, k6 −→ fundamental string winding along Ŝ1 and S1

respectively,
Q̂, k1, k2 −→ momenta or winding charges along the
internal directions.
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Generalisation

Magnetic charge vector

The elements of the magnetic charge vector can be given
the following interpretation in the second description,

l3, l4 −→ number of NS 5 branes wrapped along
Ŝ1 × T 4 and S1 × T 4 respectively.
l5, l6 −→ KK-monopole charges associated with Ŝ1 and
S1 respectively,
P̂, l1, l2 −→ monopole charges associated with the internal
directions.
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Generalisation

Interpretation in the first description

Electric charge vector

Following the duality chain we can interpret the electric
charges in the first description as follows,

k3 -> D-string winding along S̃1,
k4 -> momentum along S1,
k5 -> D5 brane charge along S̃1 × K 3,
k6 -> number of KK-monopole associated with S̃1,
k1 -> fundamental IIB string winding charge along S̃1,
k2 -> number of NS 5 brane wrapped along S̃1 × K 3,
Q̂ -> D3 brane charges wrapped along 22 two-cycles of K3
and S̃1.
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Generalisation

Interpretation in the first description

Magnetic charge vector

Following the duality chain we can interpret the magnetic
charges in the first description as follows,

l3 -> D-string winding along S1,
l4 -> momentum along S̃1,
l5 -> D5 brane charge along S1 × K 3,
l6 -> number of KK-monopole associated with S1,
l1 -> fundamental IIB string winding charge along S1,
l2 -> number of NS 5 brane wrapped along S1 × K 3,
P̂ -> D3 brane charges wrapped along 22 two-cycles of K3
and S1.
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Generalisation

S-duality

The electric - magnetic duality in the second description
corresponds to a geometric transformation S̃1 ←→ S1 in
the first description.
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Original configuration

The original configuration studied by David and Sen has
charge vectors,

Q =



0
0
0
0
−n
0
−1


P =



0
0
0

Q1 − 1
−J
1
0


The T-duality invariants are,

Q2 = 2n P2 = 2(Q1 − 1) Q.P = J
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The field configuration in the first description is,
−n units of momentum along S1 and J units of momentum
along S̃1,
A single KK-monopole associated with S̃1, a single D5
brane wrapped on K 3× S1 and Q1 number of D1 branes
wrapped along S1 direction.

A D5 brane wrapped on K 3× S1 also carries -1 unit of D1
brane charge along S1.
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How can we generalise the charge vectors?

We shall do this by adding charges to the existing system
by exciting appropriate collective modes of the system.

It is easiest to study this in the first description of the
theory.

There are 3 sources of the collective modes, excitations of
KK monopole, and two different types of flux configurations
on D5 brane.
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Source 1: Excitations of KK monopole

We have a KK-monopole associated with S̃1 in IIB. The
solution is,

ds2 =

(
1 +

K
√
α′

2r

)(
dr2 + r2(dθ2 + sin2 θdφ2)

)

+ K 2

(
1 +

K
√
α′

2r

)−1(
dψ +

√
α′

2
cos θdφ

)2

This geometry is known as Taub-NUT space.This space is
transverse to the KK-monopole world volume K 3× S1 × t .



Introduction Normalisation New Charge Vector Collective Modes Shifts Spectrum Conclusion

TN geometry admits a self-dual normalizable harmonic 2
form, ω,

ω ∝ 2√
α′

r

r + 1
2K
√
α′

dσ3 +
K

(r + 1
2K
√
α′)2

dr ∧ σ3

σ3 ≡

(
dψ +

√
α′

2
cos θdφ

)
.
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Type IIB in ten dimensions has following form fields,
2 form fields: B and C(2),
4 form field C(4), which after reducing along 2 cycles of K3
gives additional 2 form fields.

Given such a 2 form field CMN , we introduce a scalar field
φ,

C = φ(y , t)ω,

where y is along S1.
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We consider configuration carrying momentum conjugate
to this scalar field OR winding number along y of this
scalar field .
=⇒ represented by solutions where φ is linear in t or y. So,
we need,

dC ∝ dt ∧ ω dC ∝ dy ∧ ω

First one has a component proportional to dt ∧ dr ∧ dψ, so
it represents strings electrically charged under C, wrapped
along S̃1,
Second one has a component proportional to dy ∧ dθ ∧ dφ,
so it represents strings magnetically charged under C
wrapped along S̃1.
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Deformations

C State

RR D1 brane S̃1 (k3)

RR D5 brane wrapped on K 3× S̃1 (k5)

NSNS fundamental string of IIB (k1)

NSNS NS5 brane wrapped on K 3× S̃1 (k2)

C(4) D3 brane along 2 cycles of K 3× S̃1 (Q̂)
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In this way, we can produce the entire electric charge
vector from these collective modes.

k2 represents NS5 brane charge wrapped along k3× S̃1.

For a weakly coupled IIB theory, this can produce a large
backreaction to the geometry, therefore we set k2 = 0.
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Source 2: Gauge Field Fluxes on D5 Brane

The original configuration also contains one D5 brane
wrapped along K 3× S1.

We can turn on flux F of world volume gauge fields on D5
brane through various 2-cycles of K3.

The coupling of RR fields to D5 brane is,∫ [
C(6) + C(4) ∧ F +

1
2

C(2) ∧ F ∧ F + · · ·
]
,

the integral is over the D5 brane world volume which spans
(t,y,K3).
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The coupling
∫

C(4) ∧ F gives charges of the D3 branes
wrapped along the 2-cycles of K3 and S1.

These are the 22 dimensional P̂ sitting in magnetic charge
vector ~P and the gauge field strength is proportional to,

F ∝
∑

P̂αΩα,

Ωα is the 2-cycle of K3.
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Source 3: Electric Flux along S1

D5 brane can also carry electric flux along S1 direction.

This induces charges of a fundamental type IIB strings
wrapped along S1 direction.

This gives charge l1 to the charge vector.

We do not produce any deformation of our original
configuration which produces l2 or l6, so these two charges
are zero.

So, we get the magnetic charge vector.
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Deformed charge vector

So, we finally get the deformed charge vector as,

Q =



Q̂
k1

0
k3

k4

k5

k6


P =



P̂
l1
0
l3
l4
l5
0


It is clear that the value of Q2,P2 and Q.P changes.



Introduction Normalisation New Charge Vector Collective Modes Shifts Spectrum Conclusion

Additional shift in charge vector

We need to consider the effect of the interaction of these
deformations produced by the collective modes with:

the background fields already present in the system,
and

the background fields produced by them, i.e. among
themselves.

This produce further shifts in the charge vector. While first
effect is linear in deformations, second one has a quadratic
dependence on new charges.



Introduction Normalisation New Charge Vector Collective Modes Shifts Spectrum Conclusion

Electric charge vector

Let C(2) be any 2 form field in the 6D theory (IIB on K3)
and F = dC is the field strength.

Switching on various components of electric charge vector
~Q requires F to be proportional to dt ∧ ω or dy ∧ ω. This
gives a coupling,

−
∫ √

−det ggytFymnF mn
t ,

where m,n are TN space indices.

This produces a source for gyt , momentum along S1 (k4).
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Shift
Thus, we get a shift in k4 quantum number given as,

∆k4 = k3k5 + Q̂2/2, k2 = 0

k3k5 comes from RR 2-form field.
Q̂2/2 comes from RR 4-form field reduced along 2-cycles
of K3.

There is no other shifts in the electric vector.
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Magnetic charge vector

1.

D5-brane wrapped on K 3× S1 OR the magnetic flux on
this brane along any of the 2-cycles of K3 can produce a
magnetic 2 form field with field strength,

F ≡ dC ∝ sin θ dψ ∧ dθ ∧ dφ,

C is any 2-form field of 6D.

In TN background F satisfies equation of motion, dF = 0
and Bianchi identity ∗dF = 0.

For various 2-form fields, the coefficient of this term is
either proportional to 1, as we have taken only one
D5-brane OR P̂.
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This field strength together with the field strength coming
from KK-monopole excitations, F ∝ dt ∧ ω generate a
source for the component gψt via the coupling,

−
∫ √

−det ggψtFψmnF mn
t .

Shift

This shifts momentum along S̃1 , i.e. l4 quantum number
as,

∆l4 = k3 + Q̂.P̂.

k3 comes from F of RR 2-form field of IIB,
Q̂.P̂ comes from F of RR 4-form field of IIB along various
2-cycles of K3.
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2.
In D5-brane world volume theory, we also had a coupling
proportional to, ∫

C(2) ∧ F ∧ F .

It acts as a source for D1-brane charge wrapped along S1.

Shift
So, it shifts the corresponding quantum number l3 by an
amount quadratic in F or P̂,

∆l3 = −P̂2/2.
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3.
shifted l3 quantum number is,

l3 = Q1 − 1− P̂2/2.

Hence, the charge of the D1-brane is shifted and the
corresponding 2-form field C(2) is :

dC(2) ∝ (Q1 − 1− P̂2/2) r−2 dr ∧ dt ∧ dy ,

the right hand side is both closed and co-closed.

We also have a component from the excitation of the
collective coordinate of KK-monopole,

dC(2) ∝ k5 ∧ dy ∧ ω.
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Combining these two field strengths, we get a source term
for gψt via the coupling,

−
∫ √

−det ggψtFψryF ry
t .

Shift
This produce an additional shift in l4 as,

∆l4 = k5(Q1 − 1− P̂2/2).

These are all possible shifts in the magnetic charge vector.
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Shifted charge vector

Combining all these, the final charge vectors are,

Q̂
k1

0
k3

−n + k3k5 + Q̂2

2
k5

−1


,



P̂
l1
0

Q1 − 1− P̂2/2

−J + k3 + Q̂ · P̂ + k5(Q1 − 1− P̂2

2 )
1
0


.

This has, Q2 = 2n, P2 = 2(Q1 − 1) and Q.P = J .

d(Q,P) = f (1
2Q2, 1

2P2 + 1, Q.P) also does not change.
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Dyon spectrum

Question
Can we still justify d(Q,P) as the Dyon degeneracy function
of the system ?

Dyon spectra was computed from three mutually
non-interacting parts,

dynamics of KK-monopole,
overall motion of D1-D5 system in the background of
KK-monopole,
motion of D1-branes relative to D5-branes.

Q. Can the additional charges from fluxes on D5-brane
and winding and momenta of collective excitation of
KK-monopole affect this analysis ?
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a.
The KK-monopole dynamics is not affected.

b.
In the weakly coupled IIB theory, the overall motion of the
D1-D5 system in KK background is also not affected. In
weak coupling limit, the additional background fields due to
additional charges are small compared to the one due to
KK-monopole.

For this it is important to keep l2 = l6 = 0 .
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c.
The precise dynamics of D1-branes relative to D5-brane is
affected by the presence of the gauge field flux on the
D5-brane.

However, in the degeneracy formula what enters is the
elliptic genus of the corresponding conformal field theory.
This does not change due to the fluxes.
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Conclusion
Using collective excitations we can turn on more charges
on a dyon.

Supergravity is clever enough to understand the effects of
these new charges.

New excitations adjust original dyon charges, which
ensures consistency of the degeneracy formula for general
charge vectors.
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