Introduction 0000000	Normalisation	New Charge Vector	Collective Modes	Shifts 0000000	Spectrum	Conclusion o

Adding Charges to N = 4 Dyons

Nabamita Banerjee

Harish-Chandra Research Institute, Allahabad

with D. Jatkar and A. Sen

ISM, 2007

Introduction 0000000	Normalisation	New Charge Vector	Collective Modes	Shifts Spectrue	m Conclusion o
Outline					

Introduction

- Basics
- Heterotic string on T⁶
- 2 Normalisation
 - Conventions
- 3 New Charge Vector
 - Generalisation
- Collective Modes
- 5 Shifts
- 6 Spectrum

Introduction •••••	Normalisation	New Charge Vector	Collective Modes	Shifts 0000000	Spectrum	Conclusion o
Basics						
Generali	ties					

N = 4 models

- Spectrum of quarter BPS dyons in a class of four dimensional N = 4 supersymmetric string theories is reasonably well understood by now.
- These include toroidally compactified heterotic string theory, CHL models as well as asymmetric orbifolds of type II string theories.
- Method used for counting considers a specific description of quarter BPS dyons. (Dijkgraaf-Verlinde-Verlinde, Strominger-Shih, David-Jatkar-Sen,

Dabholkar-Gaiotto-Nampuri)

Introduction o e o o o o o o o o o o o o o o o o o	Normalisation	New Charge Vector	Collective Modes	Shifts 000000	Spectrum	Conclusion o
Basics						
Generali	ities contd.					

Motivation

- This description does not give the most general charge vector corresponding to a quarter BPS dyon.
- While we expect the same counting formula to work for more general quarter BPS dyons, it is important to understand exactly how it works.
- Aim of our work is to consider a more general charge vector and see how the degeneracy formula takes these dyons into account.
- In what follows we will illustrate our results in terms of heterotic string compactified on T⁶.

Introduction	Normalisation	New Charge Vector	Collective Modes	Shifts 000000	Spectrum	Conclusion O
Heterotic string	on <i>T</i> ⁶					
	erintions					

First Description

We consider type IIB string theory on $K3 \times S^1 \times \tilde{S}^1$. We call this to be the first description of the theory. A dyon is a specific brane configuration in this theory.

Second Description

We consider heterotic string theory on $T^4 \times S^1 \times \hat{S}^1$, we call this to be the second description of the theory. A dyon in this theory is denoted by a certain electric and magnetic charge vector.

These two descriptions are related by a chain of duality transformations.

Introduction	Normalisation	New Charge Vector	Collective Modes	Shifts 000000	Spectrum	Conclusion o
Heterotic string of	on <i>T</i> ⁶					

Duality chain

$$\begin{pmatrix} IIB \\ K3 \times \tilde{S}^1 \end{pmatrix} \xrightarrow{\longrightarrow} \begin{pmatrix} IIB \\ K3 \times \tilde{S}^1 \end{pmatrix} \xrightarrow{\longrightarrow} \begin{pmatrix} IIA \\ K3 \times \hat{S}^1 \end{pmatrix} \xrightarrow{\longrightarrow} \begin{pmatrix} Heterotic \\ T^4 \times \hat{S}^1 \end{pmatrix}$$

• Given any field configuration in the first description, we can follow the duality chain and find the corresponding field configuration in the second description.

Introduction	Normalisation	New Charge Vector	Collective Modes	Shifts 000000	Spectrum	Conclusion o
Heterotic string of	on <i>T</i> ⁶					

Charge vector

- The compactified theory has 28 U(1) gauge fields.
- Any given state is characterised by 28 dimensional electric and magnetic charge vectors, \vec{Q} and \vec{P} .

$$Q = \begin{pmatrix} \hat{Q} \\ k_1 \\ k_2 \\ k_3 \\ k_4 \\ k_5 \\ k_6 \end{pmatrix} \qquad P = \begin{pmatrix} \hat{P} \\ l_1 \\ l_2 \\ l_3 \\ l_4 \\ l_5 \\ l_6 \end{pmatrix}$$

Introduction ○○○○○●○	Normalisation	New Charge Vector	Collective Modes	Shifts 000000	Spectrum	Conclusion O
Heterotic string c	on T ⁶					

T-duality

• T-duality symmetry is SO(6, 22; Z), and the T-duality invariants are,

$$Q^2 = Q^T L Q \quad P^2 = P^T L P \quad Q.P = Q^T L P,$$

where L is a 28×28 matrix with (6, 22) signature.

Introduction	Normalisation	New Charge Vector	Collective Modes	Shifts	Spectrum	Conclusion
000000						
Heterotic string of	on <i>T</i> ⁶					

Special Charge vector

The degeneracy formula was computed using the charge vectors (David,Sen)

$$Q = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ k_4 \\ 0 \\ k_6 \end{pmatrix} \qquad P = \begin{pmatrix} 0 \\ 0 \\ 0 \\ l_3 \\ l_4 \\ l_5 \\ 0 \end{pmatrix}$$

They found the degeneracy of the states of the system as ,

$$d(Q, P) = f(\frac{Q^2}{2}, \frac{P^2}{2} + 1, Q.P)$$

Introduction	Normalisation ●○	New Charge Vector	Collective Modes	Shifts 000000	Spectrum	Conclusion o
Conventions						

Classification

- We shall use the second description of the theory to classify charges as electric or magnetic.
- An electrically charged state will correspond to an elementary string state.
- A magnetically charged state will correspond to a wrapped NS 5 brane or KK monopole.
- Electric/Magnetic charges appearing in the charge vector are related to the asymptotic values of the gauge field strength as,

$$F_{rt}^{i}|_{\infty} = rac{k_{i}}{r^{2}}$$
 $F_{\theta\phi}^{i}|_{\infty} = I_{i}sin\theta$

Introduction	Normalisation ○●	New Charge Vector	Collective Modes	Shifts 0000000	Spectrum	Conclusion o
Conventions						
Convent	tions Conto	d				

Normalisations

Coordinates ψ, y, χ are along Š¹, S¹, Ŝ¹ directions respectively and are normalised to 2π√α'.

• K3 volume is normalised to
$$(2\pi\sqrt{\alpha'})^4$$
.

• We choose
$$\alpha' = 16$$
.

Introduction 0000000	Normalisation	New Charge Vector	Collective Modes	Shifts 000000	Spectrum	Conclusion o
Generalisation						
New Cha	arges					

Electric charge vector

- The elements of the 28-dimensional electric charge vector can be given the following interpretation in the second description.
 - $k_3, k_4 \longrightarrow$ momenta along \hat{S}^1 and S^1 respectively,
 - $k_5, k_6 \longrightarrow$ fundamental string winding along \hat{S}^1 and S^1 respectively,
 - Q̂, k₁, k₂ → momenta or winding charges along the internal directions.

Introduction	Normalisation	New Charge Vector	Collective Modes	Shifts 0000000	Spectrum	Conclusion O
Generalisation						

Magnetic charge vector

- The elements of the magnetic charge vector can be given the following interpretation in the second description,
 - $I_3, I_4 \longrightarrow$ number of NS 5 branes wrapped along $\hat{S}^1 \times T^4$ and $S^1 \times T^4$ respectively.
 - $\textit{I}_5,\textit{I}_6 \longrightarrow KK\text{-monopole charges associated with } \hat{S}^1$ and S^1 respectively,
 - *P̂*, *I*₁, *I*₂ → monopole charges associated with the internal directions.

Introduction

Normalisation

New Charge Vector

Collective Modes

Shifts Spectrum

Conclusion o

Generalisation

Interpretation in the first description

Electric charge vector

- Following the duality chain we can interpret the electric charges in the first description as follows,
 - $k_3 \rightarrow$ D-string winding along \tilde{S}^1 ,
 - $k_4 \rightarrow$ momentum along S^1 ,
 - $k_5 \rightarrow D5$ brane charge along $\tilde{S}^1 \times K3$,
 - k_6 -> number of KK-monopole associated with \tilde{S}^1 ,
 - $k_1 \rightarrow$ fundamental IIB string winding charge along \tilde{S}^1 ,
 - $k_2 \rightarrow$ number of NS 5 brane wrapped along $\tilde{S}^1 \times K3$,
 - Q̂ -> D3 brane charges wrapped along 22 two-cycles of K3 and S̃¹.

Introduction

Normalisation

New Charge Vector

Collective Modes

Shifts Spectrum

Conclusion o

Generalisation

Interpretation in the first description

Magnetic charge vector

- Following the duality chain we can interpret the magnetic charges in the first description as follows,
 - $I_3 \rightarrow$ D-string winding along S^1 ,
 - $l_4 \rightarrow$ momentum along \tilde{S}^1 ,
 - $I_5 \rightarrow$ D5 brane charge along $S^1 \times K3$,
 - I_6 -> number of KK-monopole associated with S^1 ,
 - I_1 -> fundamental IIB string winding charge along S^1 ,
 - l_2 -> number of NS 5 brane wrapped along $S^1 \times K3$,

Introduction	Normalisation	New Charge Vector	Collective Modes	Shifts 0000000	Spectrum o@oo	Conclusion o
Generalisation						
S-duality	/					

 The electric - magnetic duality in the second description corresponds to a geometric transformation S
¹ ↔ S¹ in the first description.

Introduction	Normalisation	New Charge Vector	Collective Modes	Shifts 000000	Spectrum 000000	Conclusion o
Original	configurat	tion				

• The original configuration studied by David and Sen has charge vectors,

$$Q = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ -n \\ 0 \\ -1 \end{pmatrix} \qquad P = \begin{pmatrix} 0 \\ 0 \\ 0 \\ Q_1 - 1 \\ -J \\ 1 \\ 0 \end{pmatrix}$$

• The T-duality invariants are,

$$Q^2 = 2n$$
 $P^2 = 2(Q_1 - 1)$ $Q.P = J$

- The field configuration in the first description is,
 - -n units of momentum along S^1 and J units of momentum along \tilde{S}^1 ,
 - A single KK-monopole associated with S¹, a single D5 brane wrapped on K3 × S¹ and Q₁ number of D1 branes wrapped along S¹ direction.
- A D5 brane wrapped on K3 × S¹ also carries -1 unit of D1 brane charge along S¹.

ntroduction	Normalisa

ation New Charge Vector

Collective Modes

Shifts Spectrum

Conclusion o

How can we generalise the charge vectors?

- We shall do this by adding charges to the existing system by exciting appropriate collective modes of the system.
- It is easiest to study this in the first description of the theory.
- There are 3 sources of the collective modes, excitations of KK monopole, and two different types of flux configurations on D5 brane.

Introduction	Normalisation	New Charge Vector	Collective Modes	Shifts 000000	Spectrum ০০০০০	Conclusion o
Source	1: Excitatio	ons of KK mor	nopole			

We have a KK-monopole associated with Š¹ in IIB. The solution is,

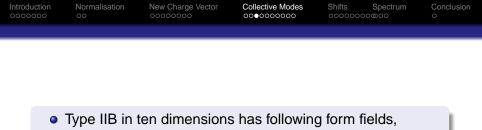
$$ds^{2} = \left(1 + \frac{K\sqrt{\alpha'}}{2r}\right) \left(dr^{2} + r^{2}(d\theta^{2} + \sin^{2}\theta d\phi^{2})\right) \\ + K^{2}\left(1 + \frac{K\sqrt{\alpha'}}{2r}\right)^{-1} \left(d\psi + \frac{\sqrt{\alpha'}}{2}\cos\theta d\phi\right)^{2}$$

 This geometry is known as Taub-NUT space. This space is transverse to the KK-monopole world volume K3 × S¹ × t.

 TN geometry admits a self-dual normalizable harmonic 2 form, ω,

$$\omega \propto \frac{2}{\sqrt{\alpha'}} \frac{r}{r + \frac{1}{2}K\sqrt{\alpha'}} d\sigma_3 + \frac{K}{(r + \frac{1}{2}K\sqrt{\alpha'})^2} dr \wedge \sigma_3$$

$$\sigma_3 \equiv \left(d\psi + \frac{\sqrt{\alpha'}}{2} \cos\theta d\phi \right).$$



- 2 form fields: B and $C^{(2)}$,
- 4 form field *C*⁽⁴⁾, which after reducing along 2 cycles of K3 gives additional 2 form fields.
- Given such a 2 form field C_{MN} , we introduce a scalar field ϕ ,

$$C = \phi(\mathbf{y}, t)\omega,$$

where y is along S^1 .

Introduction 0000000	Normalisation	New Charge Vector	Collective Modes	Shifts 0000000	Spectrum	Conclusion o

• We consider configuration carrying momentum conjugate to this scalar field OR winding number along y of this scalar field .

 \Longrightarrow represented by solutions where ϕ is linear in t or y. So, we need,

 $d\mathbf{C} \propto dt \wedge \omega$ $d\mathbf{C} \propto d\mathbf{y} \wedge \omega$

- First one has a component proportional to *dt* ∧ *dr* ∧ *dψ*, so it represents strings electrically charged under C, wrapped along Š¹,
- Second one has a component proportional to dy ∧ dθ ∧ dφ, so it represents strings magnetically charged under C wrapped along Š¹.

Introd		Normalisation	New Charge Vector	Collective Modes	Shifts Spectrum	Conclusion o
	Defo	rmations				
	С		State			
	RR		D1 brane \tilde{S}^1	(<i>k</i> ₃)		
	RR		D5 brane wra	apped on K3	$ imes ilde{\mathcal{S}}^{1}$ (k ₅)	
	NSN	S	fundamental	string of IIB (<i>I</i>	<i>k</i> ₁)	
	NSN	S	NS5 brane w	rapped on K3	$3 imes ilde{S}^1$ (k_2)	
	$\mathbf{o}(4)$					

 $C^{(4)}$ D3 brane along 2 cycles of $K3 \times \tilde{S}^1$ (\hat{Q})

Introduction 0000000	Normalisation	New Charge Vector	Collective Modes	Shifts 0000000	Spectrum	Conclusion o

- In this way, we can produce the entire electric charge vector from these collective modes.
- k_2 represents NS5 brane charge wrapped along $k3 \times \tilde{S}^1$.
- For a weakly coupled IIB theory, this can produce a large backreaction to the geometry, therefore we set $k_2 = 0$.

Introduction Normalisation New Charge Vector Coll

Collective Modes

Shifts Spectrum

Conclusion o

Source 2: Gauge Field Fluxes on D5 Brane

- The original configuration also contains one D5 brane wrapped along $K3 \times S^1$.
- We can turn on flux *F* of world volume gauge fields on D5 brane through various 2-cycles of K3.
- The coupling of RR fields to D5 brane is,

$$\int \left[C^{(6)} + C^{(4)} \wedge \mathcal{F} + rac{1}{2} C^{(2)} \wedge \mathcal{F} \wedge \mathcal{F} + \cdots
ight],$$

the integral is over the D5 brane world volume which spans (t,y,K3).

- The coupling ∫ C⁽⁴⁾ ∧ F gives charges of the D3 branes wrapped along the 2-cycles of K3 and S¹.
- These are the 22 dimensional P̂ sitting in magnetic charge vector P̂ and the gauge field strength is proportional to,

$$\mathcal{F}\propto\sum\hat{\mathcal{P}}_{lpha}\Omega_{lpha},$$

 Ω_{α} is the 2-cycle of K3.

Introduction	Normalisation	New Charge Vector	Collective Modes	Shifts 000000	Spectrum	Conclusion o
Source	3: Electric	Flux along S ¹				

- .
 - D5 brane can also carry electric flux along S¹ direction.
 - This induces charges of a fundamental type IIB strings wrapped along S¹ direction.

This gives charge I_1 to the charge vector.

- We do not produce any deformation of our original configuration which produces *l*₂ or *l*₆, so these two charges are zero.
- So, we get the magnetic charge vector.

So, we finally get the deformed charge vector as,

$$Q = \begin{pmatrix} \hat{Q} \\ k_1 \\ 0 \\ k_3 \\ k_4 \\ k_5 \\ k_6 \end{pmatrix} \qquad P = \begin{pmatrix} \hat{P} \\ l_1 \\ 0 \\ l_3 \\ l_4 \\ l_5 \\ 0 \end{pmatrix}$$

• It is clear that the value of Q^2 , P^2 and Q.P changes.

Introduction	Normalisation	New Charge Vector	Collective Modes	Shifts ●00000	Spectrum	Conclusion o

Additional shift in charge vector

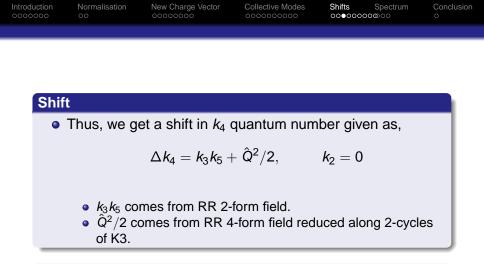
- We need to consider the effect of the interaction of these deformations produced by the collective modes with:
 - the background fields already present in the system, and
 - the background fields produced by them, i.e. among themselves.
- This produce further shifts in the charge vector. While first effect is linear in deformations, second one has a quadratic dependence on new charges.

- Let $C^{(2)}$ be any 2 form field in the 6D theory (IIB on K3) and F = dC is the field strength.

$$-\int\sqrt{-\det g}g^{yt}F_{ymn}F_t^{mn},$$

where *m*,*n* are TN space indices.

• This produces a source for g^{yt} , momentum along S^1 (k_4).



There is no other shifts in the electric vector.

Introduction 0000000	Normalisation	New Charge Vector	Collective Modes	Shifts ○○○●○○	Spectrum	Conclusion o
Magneti	c charge v	ector				

1.

• D5-brane wrapped on $K3 \times S^1$ OR the magnetic flux on this brane along any of the 2-cycles of K3 can produce a magnetic 2 form field with field strength,

$$F \equiv dC \propto \sin \theta \, d\psi \wedge d\theta \wedge d\phi,$$

C is any 2-form field of 6D.

- In TN background F satisfies equation of motion, dF = 0 and Bianchi identity *dF = 0.
- For various 2-form fields, the coefficient of this term is either proportional to 1, as we have taken only one D5-brane OR P.

Introduction	Normalisation	New Charge Vector	Collective Modes	Shifts oooo●oo	Spectrum	Conclusion O

 This field strength together with the field strength coming from KK-monopole excitations, *F* ∝ *dt* ∧ ω generate a source for the component g^{ψt} via the coupling,

$$-\int \sqrt{-\det g} g^{\psi t} F_{\psi mn} F_t^{mn}.$$

Shift

• This shifts momentum along \tilde{S}^1 , i.e. I_4 quantum number as,

$$\Delta I_4 = k_3 + \hat{\mathsf{Q}}.\hat{\mathsf{P}}.$$

- k₃ comes from F of RR 2-form field of IIB,
- Q.P comes from F of RR 4-form field of IIB along various 2-cycles of K3.

Introduction	Normalisation	New Charge Vector	Collective Modes	Shifts ○○○○○●	Spectrum	Conclusion O

 In D5-brane world volume theory, we also had a coupling proportional to,

$$\int C^{(2)} \wedge \mathcal{F} \wedge \mathcal{F}.$$

It acts as a source for D1-brane charge wrapped along S¹.

Shift

So, it shifts the corresponding quantum number *l*₃ by an amount quadratic in *F* or *P*,

$$\Delta I_3 = -\hat{P}^2/2.$$

Introduction	Normalisation	New Charge Vector	Collective Modes	Shifts 000000	Spectrum	Conclusion O

3.

• shifted *I*₃ quantum number is,

$$I_3 = Q_1 - 1 - \hat{P}^2/2.$$

 Hence, the charge of the D1-brane is shifted and the corresponding 2-form field C⁽²⁾ is :

$$dC^{(2)} \propto \left(Q_1 - 1 - \hat{P}^2/2
ight) r^{-2} \, dr \wedge dt \wedge dy,$$

the right hand side is both closed and co-closed.

 We also have a component from the excitation of the collective coordinate of KK-monopole, *dC*⁽²⁾ ∝ *k*₅ ∧ *dy* ∧ ω.

Introduction	Normalisation	New Charge Vector	Collective Modes	Shifts	Spectrum ⊃●∞oo	Conclusion O

• Combining these two field strengths, we get a source term for $g^{\psi t}$ via the coupling,

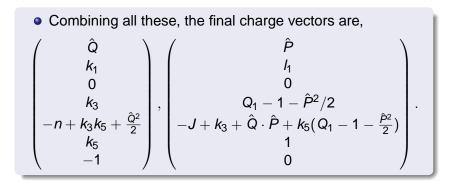
$$-\int\sqrt{-\det g}g^{\psi t}\mathcal{F}_{\psi ry}\mathcal{F}_{t}{}^{ry}.$$

Shift

• This produce an additional shift in *l*₄ as,

$$\Delta I_4 = k_5 (Q_1 - 1 - \hat{P}^2/2).$$

These are all possible shifts in the magnetic charge vector.



• This has, $Q^2 = 2n$, $P^2 = 2(Q_1 - 1)$ and Q.P = J. • $d(Q, P) = f(\frac{1}{2}Q^2, \frac{1}{2}P^2 + 1, Q.P)$ also does not change.

Introduction 0000000	Normalisation	New Charge Vector	Collective Modes	Shifts 000000	Spectrum	Conclusion o
Dyon sp	ectrum					

Question

- Can we still justify d(Q,P) as the Dyon degeneracy function of the system ?
- Dyon spectra was computed from three mutually non-interacting parts,
 - dynamics of KK-monopole,
 - overall motion of D1-D5 system in the background of KK-monopole,
 - motion of D1-branes relative to D5-branes.
- Q. Can the additional charges from fluxes on D5-brane and winding and momenta of collective excitation of KK-monopole affect this analysis ?

oduction	Normalisation	New Charge Vector	Collective Modes	Shifts 0000000	Spectrum	Conclusion o
а.						
۹	The KK-mo	onopole dynam	ics is not affe	cted.		
_						

b.

 In the weakly coupled IIB theory, the overall motion of the D1-D5 system in KK background is also not affected. In weak coupling limit, the additional background fields due to additional charges are small compared to the one due to KK-monopole.

For this it is important to keep $l_2 = l_6 = 0$.

Introduction	Normalisation	New Charge Vector	Collective Modes	Shifts 00000000	Spectrum ©O●	Conclusion o

C.

- The precise dynamics of D1-branes relative to D5-brane is affected by the presence of the gauge field flux on the D5-brane.
- However, in the degeneracy formula what enters is the elliptic genus of the corresponding conformal field theory. This does not change due to the fluxes.

Introduction 0000000	Normalisation	New Charge Vector	Collective Modes	Shifts 0000000	Spectrum	Conclusion •

Conclusion

- Using collective excitations we can turn on more charges on a dyon.
- Supergravity is clever enough to understand the effects of these new charges.
- New excitations adjust original dyon charges, which ensures consistency of the degeneracy formula for general charge vectors.