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Plan of Talk

Some brief introduction and motivation.
The doubled formalism
Some quantum aspects of the doubled formalism.
Quantum equivalence from vanishing of the doubled
beta-function
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T-folds

Just as in one can define a string background using
diffeomorphism or gauge transformation transition
functions, one can use T-dualities as transition functions.
This leads to non-geometric string backgrounds
T-duality on a geometric background can lead to a
non-geometric background.
Lifts of D=4 supergravity backgrounds include
non-geometric backgrounds.
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Quantum Equivalence

We should be sure that important quantum aspects of the
ordinary string go over to the doubled formalism.
Confirm necessity of parts of the doubled formalism for
quantum consistency.
Are there any differences that appear in the doubled
approach?
What happens when we consider non-geometric
backgrounds?
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Simple T-duality

The simplest form of T-duality relates strings on a circle of
radius R to those on a circle of radius 1/R.
It identifies winding modes in one theory with momentum
modes in the other. The winding modes are a stringy
effect.
X is interchanged with X̃ , where X̃ = XL − XR.
Would like to put X and X̃ on an equal footing.
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Double the Co-ordinates

We consider a sigma model whose target space is locally a
T d bundle over a base space N.
The base space has co-ordinates Y m on a given patch.
Normally we would consider the d momenta P i = P i

αdσα

on the fibres, locally P i
α = ∂αX i . The T-duality group would

be O(d ,d ; Z).
Instead we consider the 2d momenta P I = P I

αdσα.
P I

α = ∂αXI , where XI are the co-ordinates on the doubled
torus.
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The Doubled Lagrangian

The doubled Lagrangian is then

Ld =
π

2
HIJP I ∧ ∗PJ + L(Y ).

where we have set to zero a possible 1-form connection on
the base AI = AI

mdY m.
We have introduced H, the doubled metric on the fibres.
We can also introduce L, an O(d ,d) invariant metric such
that

L−1HL−1H = 11,

i.e we can raise and lower indices with L.
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The Constraint

Clearly we have doubled the degrees of freedom. We
introduce a constraint to halve their number again.
The constraint is SI

JPJ − ∗P I = 0, where SI
K = LIJHJK .

S2 = 11 which ensures the consistency of the constraint (S
also defines an almost real structure).
By looking in the correct basis we will see that the
constraint forces the co-ordinates to be chiral scalars.
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Manifest O(d , d ; Z) Invariance

The Lagrangian is invariant under rigid GL(2d ,R)
transformations acting as

H → htHh , P → h−1P ,

(which act on the co-ordinates as X→ h−1X
However, we must also preserve the constraint, which
requires us to restrict to an element of
O(d ,d) ⊂ GL(2d ,R).
Further, we must preserve the periodicities of the
co-ordinates so the symmetry group must be broken again
to O(d ,d ; Z).
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Introducing the Vielbein

We can introduce a vielbein V for the metric H which is an
element of O(d ,d) invariant under the left action of
O(d)×O(d): H is a coset metric on O(d ,d)/O(d)×O(d).

HIJ =
(
V t) A

I δABVB
J .

V is chosen so that

LAB =

(
11ab 0
0 −11a′b′

)
.
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Chirality

In this O(d)×O(d) frame A = (a,a′) etc, and the
constraint becomes

Pa = ∗Pa

Pa′
= − ∗ Pa′

.

Equivalently (for flat worldsheet)

Pa
− = 0 ,

Pa′
+ = 0.

Neil B. Copland String Beta-function in the Doubled Formalism



Introduction
The Doubled Formalism

Quantum Equivalence with the Standard String
The Doubled Beta-function

Summary

Setting up the Formalism
The Constraint and Chirality
Polarisation

Chirality

In this O(d)×O(d) frame A = (a,a′) etc, and the
constraint becomes

Pa = ∗Pa

Pa′
= − ∗ Pa′

.

Equivalently (for flat worldsheet)

Pa
− = 0 ,

Pa′
+ = 0.

Neil B. Copland String Beta-function in the Doubled Formalism



Introduction
The Doubled Formalism

Quantum Equivalence with the Standard String
The Doubled Beta-function

Summary

Setting up the Formalism
The Constraint and Chirality
Polarisation

In terms of Co-ordinates

For a flat fibre this is locally

∂−X a = 0 ,
∂+X a′

= 0 .

For a toroidal worldsheet where z = σ1 + τσ0,

∂̄X a = 0 ,
∂X a′

= 0 .

The split is generally position dependent.
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Polarisation

To make contact with the undoubled theory we must
choose a polarisation, this is a projector that picks
whichT d subtorus within the T 2d is considered physical.
We are picking a GL(d ,R) subgroup of O(d ,d) such that
the fundamental 2d of O(d ,d) splits into the fundamental d
and its dual d′ of GL(d ,R).
T-dual theories have the same doubled theory, and are
obtained from it by different choices of polarisation.
The earlier O(d ,d ; Z) transformations of the doubled
geometry can instead be thought of as transformations of
the polarisation, relating the theory to different T-dual
undoubled theories.
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The polarisation projector

is given by

Φ =

(
Π

Π̃

)
.

This allows recovery of the physical and dual co-ordinates

X i = ΠXI ,

X̃ i = Π̃XI .

We also let P = ΠP and Q = Π̃P. In this basis

L =

(
0 11
11 0

)
,H =

(
G − BG−1B BG−1

−G−1B G−1

)
.
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T-folds

Recall T-folds can have T-duality transition functions and
are in general not manifolds.
However, in the doubled formalism they are described by a
doubled torus which is a manifold.
For non-geometric backgrounds there is no global choice
of polarisation.
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Equivalence with the standard string sigma-model

Classical equivalence with the standard sigma-model can
be demonstrated by solving the constraint for the P i in
terms of the Qi and using the classical equations of motion.
The current JI = HIJPJ − LIJ ∗ PJ is conserved and its
vanishing implies the constraint in fact only J i = 0 is
necessary).
Quantum equivalence can be shown by gauging this
current.
Adding the necessary terms only leaves the action gauge
invariant if we include a topological term.
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The Topological Term

The topological term is given by

Lt = πΠ̃i[IΠ
i
J]dXI ∧ dXJ = πdX i ∧ dX̃i .

A non-standard normalisation is also required to show
equivalence.
Quantum equivalence was also shown in a specific case
using Dirac brackets.
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Holomorphic Factorisation

A key issue in using the doubled formalism for quantum
calculations is how to apply the constraint.
Our method was to work in the basis where the constraint
can be thought of as a chirality constraint and use
techniques for writing the partition function of chiral
bosons.
Even for simple geometries this is difficult as you must
separate the contribtions of the left and right bosons before
you factorise them.
The basis where the constraint is a chirality constraint is
not the one in which the co-ordinates have integral periods.
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The results

We were able to reproduce the one-loop partition function
that is well known for the standard string sigma-model.
The topological term and unusual normalisation were
needed, as in other methods.
From consideration of higher loops it seems a T-duality
invariant dilaton is appropriate for the formalism.
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What we want to do.

Calculating the beta-function provides an additional test of
the quantum consistency of the doubled formalism.
We wonder whether there are any additional conditions on
allowed backgrounds.
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The Usual Method.

The action is expanded in fluctuations using the
Background Field Expansion.
We use the fluctuation propagator to perform contractions
and find we are left with a term proportional to

Rij∂αX i∂αX j 1
ε

Renormalisation to remove the Weyl pole requires the
vanishing of the background Ricci tensor.
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Applying the Constraint

We need a new method to apply the constraint; we want an
action for chiral scalars.
The PST procedure allows us to impose the self-duality
constraints on the scalars.

For chiral scalar P = RX + R−1X̃ and anti-chiral scalar
Q = RX − R−1X̃

S =

∫
−1

2
dP ∧ ∗dP − 1

2
dQ ∧ ∗dQ +

(Pmum)2

2u2 +
(Qmvm)2

2v2

=
1
2

∫
−(R∂1X )2 − (R−1∂1X̃ )2 + 2∂0X∂1X̃ .

More generally L = −1
2H∂1X∂1X + 1

2L∂0X∂1X .
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A Fibred Set-up

We will consider a a doubled torus fibred over a base with
co-ordinates Y . This has action

L = −Gαβ∂1Xα∂1Xβ + Lαβ∂0Xα∂1Xβ +Kαβ∂0Xα∂0Xβ ,

where

G =

(
H(Y ) 0

0 −G(Y )

)
, L =

(
L 0
0 0

)
, K =

(
0 0
0 G(Y )

)
.
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The Background Field Expansion

Now we want to write X as a classical background plus a
quantum fluctuation, there is a procedure for doing this in
nice co-ordinates.
We write the fluctuation in normal co-ordinates, ξ, which
are tangent to geodesics of the background.
These are contravariant, so expanding in ξ involves only
tensors.
The first order term in the expansion in ξ vanishes by the
equations of motion of the background.
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Background Field Expanding

In the standard case at second order we get a kinetic term
for ξ plus Rkijlξ

iξj∂αX k∂αX l .
The expansion for a general tensor involves terms like DαT
and DαDβT : L and K lead to many terms.
Using equations of motion there are many simplifications to

L(2) = −Gαβ∂1ξ
α∂1ξ

β + Lαβ∂0ξ
α∂1ξ

β +Kαβ∂0ξ
α∂0ξ

β

−2∂αGγβ∂1X γξα∂1ξ
β − 1

2
∂α∂βGγδ∂1X γ∂1X δξαξβ

+2∂aGbgξ
a∂0ξ

b∂0X g +
1
2
∂a∂bGbgξ

αξβ∂0X γ∂0X δ
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Vielbeins and Propagators

We introduce a vielbein which allows us to move to the
chiral basis where we know how to find the fluctuation
propagators, this will introduce extra terms with vielbein
derivatives.
The divergence of the propagator for a chiral scalars with a
flat FJ style action was known.
More complex contractions can be related to these (e.g.
< ξ∂ξξ∂ξ >).
The pole behaviour of propagators of different chirality
obey 1

2 (∆+ +∆−) ∼ ∆
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Result

In the case of flat base metric and zero B-field we find
exactly the usual Ricci tensor after applying the
background equations of motion.
We also find agreement with the standard string picture
when we allow non-trivial base metric and B-field
There is no Lorentz anomaly.
There was no need to use any information about isometry.
Setting the duality invariant doubled dilaton to zero rather
than the standard one actually greatly simplifies
comparison to the standard case.
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The doubled formalism is a manifestly T-duality invariant
formulation of string theory.
The partition function on a torus is the same as that for the
standard sigma-model
We can use a FJ style action and background field
expansion to reproduce the requirement of vanishing Ricci
tensor, in more general cases we reproduce the
beta-function equations.
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