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Exact Solution at Finite N

Gauge theory Partition function S3 [B.Sundborg
and Aharony et.al]

Start with the matrix model,

Z =

∫

[dU] exp

[

∞
∑

n=1

an(T )

n
TrUn TrU†n

]

Expand the exponential to obtain for the integrand

exp

[

∞
∑

n=1

an(T )

n
TrUn TrU†n

]

=
∑

~k

1
z~k

∏

j

a
kj

j Υ~k(U)Υ~k(U
†)

z~k =
∏

j
kj !jkj and Υ~k

(U) =
∞
∏

j=
(TrU j)kj .



Exact Solution at Finite N Taking the large N Limit Saddle point Equations The Solutions Phase diagram Free Fermionic Phase space Description Summary

Frobenius formula
Use Frobenius formula,

Υ~k(U) =
∑

R∈U(N)

χR(C(~k)) TrRU.

χR(C(~k )) : character of the conjugacy class C(~k) of the
permutation group Sl , (l =

∑

jkj ) in the representation R of
U(N). ~k = {k1, k2, .....}.

Orthonormality

Orthogonality relation between the characters of U(N),
∫

[dU] TrR(U) TrR′(U†) = δRR′ .

Carry out the integral over holonomy U.
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The Exact N partition function : λ = 0

Finally we obtain

Z (β) =
∑

~k

Q

j a
kj
j

z~k

∑

R

[

χR(C(~k))
]2

.

The Special Case

In a special case where an = 0 for n > 1 the partition
function becomes

Z (β) =

∞
∑

k=0

∑

R

1
k !

[dR(Sk )]2 ak
1.

χR(C(~k )) → dR(Sk ) → dimension of the representation.
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The (a,b) Model: Effective Action

This method can easily be generalized to the (a,b) model.

The effective action for (a,b) model is given by,

Seff = a1(λ, T )TrUTrU† +
b1(λ, T )

N2

(

TrUTrU†
)2

.

Exact N partition function for (a,b) Model

The exact N partition function for (a,b) model is given by,

Z (a1, b1) =
∞
∑

k=0

k/2
∑

l=0

ak−2l
1 bl

1k !

N2l l!(k−2l)!

∑

R
d2

R(Sk )

k ! .
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Rearrange the sum over representation

One can rearrange the sum over representations of U(N)
in terms of the number of boxes of the corresponding
Young tableaux.

ni → Number of boxex in the ith row of the Young tableaux.
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Partition function at λ = 0

Therefore the partition function reads as

Z (β) =

∞
∑

k=0

∞
∑

{ni}=0

1
k !

[dR(Sk )]2 ak
1 δ(ΣN

i=1ni − k).

Dimension Formula
The dimension dR(Sk ) is given by the formula

dR(Sk ) =
k !

h1!h2!...hN !

∏

i<j

(hi − hj),

where,
hi = ni + N − i ,

with
h1 > h2 > ... > hN ≥ 0.
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Taking the large N Limit

Partition function as stat. mech system

In N → ∞ the limit, the partition function can be viewed as
a statistical mechanical system.

The group characters → entropy contribution .
a1 (b1) → Boltzmann suppression factors.

Phase Transition
Interplay between these two factors.

The balance between them leads to a dominant
representation at any particular value of the temperature.

At large N, as we vary temperature the dominance of
saddle points changes => phase transition.
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Continuum Limit and Saddle Point Equations

Definitions
In N → ∞ limit, let us define

n(x) =
ni

N
, h(x) =

hi

N
, x =

i
N

x ∈ [0, 1] .

In this limit h(x) and n(x) are related by,

h(x) = n(x) + 1 − x .

The function n(x) or h(x) captures the profile of the large
N Young tableaux.

Constraint on h

h(x) > h(y) for y > x .
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Introduce Young tableaux density

Introduce the density of boxes in the Young tableaux u(h)
defined by

u(h) = −∂x(h)

∂h
.

Normalization
By definition, it obeys the normalization

∫ hU

hL

dh u(h) = 1, hL = h(1) and hU = h(0).

Constraint
From the monotonicity of h(x), it follows that u(h) obeys
the constraint

u(h) ≤ 1.
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The effective action: λ = 0

In terms of the saddle point density the partition function
becomes : Z (β) =

∫

[dh] exp[−N2Seff ].

−Seff =

∫ hU

hL

dh−
∫ hU

hL

dh′u(h)u(h′) ln |h − h′|

− 2
∫ hU

hL

dh u(h) h ln(h) + k ′ + 1 + k ′ ln(a1k ′).

Total No. of boxes

Where k ′ is related to total number of boxes ’k’ in a Young
tableaux

k = N2
∫ hU

hL

dh h u(h) = N2k ′.
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The Saddle point Equation: λ = 0

Varying Seff with respect to u(h), we obtain the saddle
point equation,

−
∫ hU

hL

dh′ u(h′)

h − h′
= ln h − 1

2
ln

[

a1k ′
]

= ln
[

h
ξ

]

where ξ2 ≡ a1k ′.

One important note

ξ involves k ′.

Which in turns depends on the density u(h).

We will therefore have to solve the equation
self-consistently.
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The Solutions : Saddle point densities

Two kinds of saddle points

In presence of constraint on u(h) there are two different
possible solutions → depending on the value of the
parameter ξ.

We will sketch the procedure and show the final result in
this talk.
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The Saddle points

Solution Class 1

0 ≤ u(h) < 1; h ∈ [q, p].

.

.
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The Saddle points

Solution Class 1

0 ≤ u(h) < 1; h ∈ [q, p].

Solution Class 2

u(h) = 1 h ∈ [0, q]

= ũ(h) h ∈ [q, p]

with 0 ≤ ũ(h) < 1.

As we vary ξ, one will have to switch from one of the
branches to the other.
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Solution Class 1                                             Solution Class 2

n     (x=0)

n     (x=1)

   1

   N

Generic plots of Young tableaux
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The sketch of the analysis

Resolvent
Introducing the resolvent H(h) defined by

H(h) =

∫ hU

hL

dh′ u(h′)

h − h′
.

Find the expression for H(h) for two different solution
classes.

Young tableaux density is given by,
u(h) = − 1

2πi [H(h + iε) − H(h − iε)] for h ∈ [q, p].

The support of u(h) as well as k ′ is determined by
expanding H(h) for large h and matching with
H(h) ∼ 1

h + (k ′ + 1
2) 1

h2 (as h → ∞).
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The Saddle densities: Solution Class 1 : λ = 0

The Young tableaux density in this solution class is given
by,

u(h) =
1
π

cos−1

[

h − 1
2 ξ

+

(

ξ − 1
2

)2

2 ξ h

]

=
2
π

cos−1
[

h + ξ − 1/2
2
√

ξh

]

. h ∈ [q, p]



Exact Solution at Finite N Taking the large N Limit Saddle point Equations The Solutions Phase diagram Free Fermionic Phase space Description Summary

The supports : p and q

The support of u(h) as well as k ′ is given by,

√
q =

√

ξ − 1√
2

,

√
p =

√

ξ +
1√
2

k ′ =
√

q p + 1
4 => a1 = 4 ξ2

4 ξ−1

q is a real and positive quantity => this branch of solution
exists for ξ ≥ 1

2 .

Conclusion : this class of solutions only exist for

a1 ≥ 1 or T > TH where a1(TH) = 1
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Plot of u(h) Vs. h : Solution class 1
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The Saddle densities: Solution Class 2: λ = 0

The Young tableaux density in this solution class is given
by,

ũ(h) =
1
π

cos−1
[

h − 1
2ξ

]

, h ∈ [q, p]

The supports: p and q

The support of u(h) is given by,

q = 1 − 2ξ ,

p = 1 + 2ξ

k ′ = ξ2

ξ ≤ 1
2 .
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Two possible solutions

From the definition a1k ′ = ξ2 we obtain

Either ξ = 0 (2A)

or , a1 = 1 (2B).

Solution 2A : ξ = 0

Uniform distribution: u(h) = 1 h ∈ [0, 1].

This is a saddle point for any value of a1.

This saddle point corresponds to the trivial representation
i.e. ni = 0.

Solution 2B : a1 = 1

A family of saddle points labeled by ξ .

Exists only at a1 = 1 i.e at T = TH .
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Plot of u(h) vs. h: Solution Class 2



Exact Solution at Finite N Taking the large N Limit Saddle point Equations The Solutions Phase diagram Free Fermionic Phase space Description Summary

The Free Energies

In large N limit the free energy is given by,

F = −T ln Z = N2TS0
eff .

S0
eff is the value of effective action at the (dominant) saddle

point.

Zero coupling Free energy: Solution Class 1

F = −N2T
[

ξ − 1
2

ln(2ξ) − 1
2

]

≤ 0.

Zero coupling Free energy: Solution Class 2

F = 0 + O(
1

N2 )
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Zero coupling phase diagram

T < TH

For low enough temperature (T < TH ) when a1 < 1 there
exists only one saddle point i.e. ξ = 0.

This saddle point corresponds to trivial representation.

Zero free energy.

T = TH

a1 = 1.

A family of solutions parameterized by 0 < ξ ≤ 1
2 .

In fact ξ = 0 configuration is a limiting member of this
family.

A finite fraction of rows of Young tableaux are empty.

Zero free energy.
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T > TH

As we further increase the temperature T > TH , then
a1 > 1.

ξ has a solution greater than 1
2 .

An exchange of dominance of the saddle point at T = TH .

All the rows of Young tableaux are filled.

a1 > 1 phase has negative free energy of order O(N2).

Confinement-deconfinement phase transition
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Extension to non-zero coupling

To see the complete phase structure we have to turn on
small ’t Hooft coupling.

(a,b) Model

We will consider the (a,b) model to explore the weak coupling
phase diagram.

Seff = a1(λ, T )TrUTrU† +
b1(λ, T )

N2

(

TrUTrU†
)2

.

All the expressions for u(h) and the supports p and q for both
the solution classes are same as that of zero coupling.

We will only discuss the phase diagram and the corresponding
pattern of Young tableaux for different saddle points.
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Weak coupling phase diagram

T < T0

For temperature T < T0 there exists only one saddle point,
ξ = 0. This saddle point corresponds to trivial
representation.

h

u
T   <   T      0

Thermal AdS
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T = T0 and T > T0

SBH/BBH

SBH       BBH

SBH          BBH

T = T     0

T >  T    0

u

h

u

h
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T = Tc

SBH

BBH
SBH           BBH

T = T    C
u

h

BH-String transition : identified by Alverez Gaume-C.
Gomez-H. Liu-Spenta Wadia
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T > Tc

SBH

BBH SBH

 BBH

u

h

T > T
    C
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T = TH

At T = TH saddle point corresponds to SBH and saddle
point corresponds to global AdS merge.

T > TH BBH is the only saddle point.

T = T      H

BBH

SBH/Thermal AdS

h

u
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Free Fermionic Phase space Description

Young tableauxVs. eigenvalue distribution

There exists a simple relation between (h, u(h)) and
(θ, σ(θ)).

The saddle point for which u(h) and h relation is one to
one, we have a mapping,

u =
θ

π
,

h
2π

= σ(θ)

Where as, for the other saddle point, the mapping is non
trivial, but simple.

u =
θ

π
,

h+ − h−

2π
= σ(θ)

sin2 θ0

2
=

1
2ξ
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Interpretation

The above relations have a natural interpretation in terms
of free fermionic picture.

The eigenvalues θ’s of the holonomy matrix U behave like
coordinates of fermions.

On the other hand the representation of U(N) also have an
interpretation in the language of free fermions with ni ’s are
like momenta. [Douglas]

This suggests that eigen value density is like a position
distribution.

Young tableauxdensity is like momentum distribution.
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Define a phase-space distribution which gives rise to these
individual distributions.

Phase space density

At saddle point define a phase space density

ρ(h, θ) =
1

2π
(h, θ) ∈ R

= 0; otherwise

Then the position distribution and momentum distributions
are given by,

σ(θ) =

∫ ∞

0
ρ(h, θ)dh

u(h) =

∫ π

−π
ρ(h, θ)dθ
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We therefore see that the large N saddle points of the
gauge theory effective action, which correspond to the
Thermal AdS, the small black hole and the big black hole
can all be thought of in terms of a particular configuration
in a free fermionic phase space.

There is a particular shape associated to each of them.
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Summary

We studied thermal gauge theory by evaluating its partition
function at finite N.

Taking large N limit of the full partition function gives us a
new perspective on some already known facts about the
phase diagram of gauge theory.

We saw there is a close relation between Young tableaux
density and eigen value density.

This identification has a natural meaning in terms of Free
fermion phase space distribution.

We found different phase space distributions for different
saddle points of the partition function.

This formulation may be helpful to reconstruct the local
theory in bulk with all its redundancies.


