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For 3-dim. pure (super-)gravity,the higher derivative

terms in the action can be removed by field redefini-

tion and

The action can be reduced to the (super-)gravity ac-

tion whose gravitational part contains a sum of three

terms, - the Einstein-Hilbert term, a cosmological con-

stant term and the Chern-Simons term.

Ads/CFT correspondance suggests that even when mat-

ter fields are present, it is possible to consistently trun-

cate the theory to standard (super-)gravity without any

matter fields.



Our main goal of the work is to describe a consistent

truncation procedure directly in bulk theory without any

reference to Ads/CFT.
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Field Redefinition of the Bosonic Fields

We begin with a three dimensional general coordinate

invt. theory of gravity coupled to an arbitrary set of

matter fields.

We denote by gµν the metric, by φ the set of all the

scalar fields, by Σ the set of all other tensor fields.

At the level of two derivative terms, the action takes the

form:

S = S 0 + S matter (1)

where

S 0 =

∫
d3x
√
−g(R + Λ(φ)) (2)

and S matter denotes the kinetic term for the matter fields.



We shall now consider the effect of adding higher deriva-

tive terms.

We assume that the length parameter ls that controls

these higher derivative terms is small compared to the

length scale l0 over which the leading sol. varies.

With each higher derivative term in the Lagrangian den-

sity ,we associate an index n that counts how many

powers of ls accompanies this term compared to the

leading term.



In order to keep track of the higher derivative terms,

we introduce a derivative counting parameter λ and ac-

company a trem of index n by a factor of λn.

We will carry out our analysis in a power series expan-

sion in λ and at the end we set λ = 1.



We introduce a new variable Pµν defined by

Pµν = Rµν −
1
2

(R + Λ(φ))gµν (3)

So Ricci tensor can be expressed as

Rµν = Pµν − (P + Λ(φ))gµν (4)

where

P = gµνPµν (5)



In this convention the most general action takes the

form

S = S 0 + λS cs + S̃ matter + λ
nS n (6)

S̃ matter denotes the matter terms which are quadratic

and higher order in Σ, derivatives of Σ and derivatives

of φ.

λnS n denotes all other terms i.e. manifestly general

coordinate invt. up to linear order in Σ, ∂µφ and their

derivatives.

It is easy to see that S n must contain at least one power

of Pµν since Pµν independent terms either can be ab-

sorbed in Λ(φ) or can be included in S̃ matter.



Thus S n has the form

S n =

∫
d3x
√
−gPµνKµν(φ,Σ,∇ρ, gρσ, Pρσ, λ) (7)

Now consider a redefinition of the metric of the form

gµν → gµν + λ
nKµν (8)

under this

S 0 →S 0 − λn
∫

d3x
√
−gPµνKµν + O(λ2n)

= S 0 − λnS n + O(λ2n)
(9)

S cs → S cs + O(λn+1) (10)

λnS n → λnS n + O(λ2n) (11)

Thus

S 0 + λS cs + λ
nS n → S 0 + λS cs + O(λn+1) (12)

Furthermore S̃ matter remains quadratic in Σ and ∂µφ

under this field redefinition.



The order λn+1 terms can now be regrouped into a

term of the form
√−g f (φ) that can be absorbed into

a redefinition of Λ0(φ),

a term quadratic in Σ and ∂φ that can be absorbed into

S̃ matter and a term containing at least one power in

Pµν.

Thus the resulting action may be expressed as:

S = S ′0 + λS cs + S̃ ′matter + λ
n+1S n+1 (13)

where

S ′0 =
∫

d3x
√
−g(R + Λ′(φ)) (14)

S n+1 =

∫
d3x
√
−gPµνK′µν(φ,Σ,∇ρ, gρσ, Pρσ, λ) (15)



Repeating this process, to any order in an expansion

in λ, the action can be brought to the form:

S =
∫

d3x
√
−g(R + Λ(φ)) + λS cs + S̃ matter (16)

Now suppose Λ(φ) has an extremum at φ = φ0. Intro-

ducing new fields ξ = φ−φ0 we may express the action

as

S =
∫

d3x
√
−g(R + Λ(φ0)) + λS cs + · · · , (17)

We can now carry out a consistent truncation of the

theory by setting ξ = 0, Σ = 0.

This leaves us with a purely gravitational action with

Einstein-Hilbert term, cosmological constant term and

Chern-Simons term.



In supergravity theory, there are additional bosonic fields

like gauge fields with Chern-Simons terms.

S gauge =

∫
d3xTr[A ∧ dA +

2
3

A ∧ A ∧ A] (18)

Now under the field redefinition

Aµ → Aµ + δAµ (19)

the Chern-Simons term changes by a term proportional

to εµνρTr
(
FµνδAρ

)
.

Thus a term of the form λn
∫ √−g Tr

(
FµνLµν

)
in the

action may be removed (up to order λ2n terms) by a

shift of Aµ proportional to
√−g εµνρLνρ.



Algorithm for Determining Λ(φ)

Of the various parameters labelling the final theory the

coefficients of the Chern-Simons terms are easy to de-

termine since they do not get renormalized from their

initial values.

On the other hand the cosmological constant term does

get renormalized during the field redefinition.

we shall outline a simple procedure for finding the ex-

act Λ(φ).



Suppose our initial action has the form

S =
∫

d3x
√
−gL (φ,Rµν,Σ) + λ S cs . (20)

Since the final truncation involves setting φ to constant

and Σ to 0, let us consider a theory of pure gravity ob-

tained by setting Σ to 0 and φ to some constant values

in the above action.



We now look for a solution of the theory of the form

ds2
= −l2(1 + 1/r2)dt2 + l2(1 + 1/r2)−1dr2

+ l2r2dφ2 ,

(21)

representing an AdS 3 space of size l. If we define

F(l, φ) = l3L (l, φ,Σ = 0) (22)

then the metric satisfies its equation of motion if l is

chosen to be at the extremum lext of F.



Now consider the form of the action obtained after a

field redefinition of the metric . After setting φ to a con-

stant and Σ to 0, the action takes the form:

S =
∫

d3x
√
−g(R + Λ(φ)) + λS cs (23)

If we evaluate l3(R + Λ(φ)) for the AdS 3 background,

we get a new function

H(l, φ) = l3
[
−

6

l2
+ Λ(φ)

]
(24)



At the extremum H is

H(l̃ext, φ) = −

√
32
Λ(φ)

= F(lext, φ)

(25)

Hence we get

Λ(φ) =
32

F(lext, φ)2
(26)

provided F(lext, φ) is negative.



Field Redefinition of the Gravitino

We begin with an action where the purely bosonic part

has already been brought into the standard form using

the field redefinition.

If the theory has altogether N supersymmetries then

there are N gravitino fields ψi
µ with 1 ≤ i ≤ N. In the

supergravity action the gravitino action has the form:

Sψ0 = −
∫

d3x εµνρψ̄i
µDνψ

i
ρ (27)

Leading gravitino equation of motion

Dνψ
i
ρ − Dρψ

i
ν = 0 (28)



The supersymmetry transformation law of the gravitino

fields takes the form

δsψ
i
µ = Dµε

i (29)

Now, we consider the possibility of adding higher deriva-

tive terms in the action.

Let us denote by η the set of all the bosonic and fermionic

fields coming from the matter sector with the scalars

measured relative to φ0.

We need to worry about terms which are at most linear

in η. We shall refer to these as the dangerous terms.



Let us suppose that the first dangerous higher deriva-

tive terms in the Lagrangian density appear at order λk.

Terms that is proportional to the equation of motion of

supergravity fields derived from the leading supergrav-

ity action can be absorbed into a redefinition of these

fields at the cost of generating higher order terms.

So,we will focus on terms which do not vanish by lead-

ing equ. of motion of supergravity fields.



We consider all the order λk terms and organise them

by their rank.

The rank of a term is defined as the total power of ψµ
and ψ̄µ. We begin with the term of lowest rank, – call it

m0.

The lowest order supersymmetry variation of the grav-

itino has the effect of producing a term of rank (m0−1).



In order for supersymmetry to be preserved, such terms

need to be cancelled by some other terms.

There are two possibilities:

1) the rank (m0 − 1) terms arising from the variation of

the gravitino cancel among themselves after we inte-

grate by parts and move all the derivatives from ε, ε̄ to

the fields.

and

2) we can try to cancel these terms against terms com-

ing from supersymmetry variation of the bosons in a

term of rank (m0 − 2).



We arrived at the following conclusion:

“It is not possible to add higher derivative dangerous

terms in the action,which do not vanish by equ. of mo-

tion, in a manner consistent with supersymmetry.”



Dimensional Reduction of Five Dimensional Super-
gravity

we shall consider five dimensional supergravity with

curvature squared term coupled to a set of vector mul-

tiplets.

We will dimensionally reduce this theory on S 2.

We will also switch on the magnetic flux through S 2.

The resultant theory is (0,4) supergravity with curved

square term.



We shall concentrate our attention on the part of the

action involving the bosonic fields only.

The five dimensional N = 2 supergravity has a Weyl

multiplet, a set of vector multiplets and a compensator

hypermultiplet.

After gauge fixing to Poincare supergravity, the bosonic

fields of the theory include the metric gab, the two-

form auxiliary field vab, a scalar auxiliary field D, a

certain number (nV) of one-form gauge fields AI
a with

1 ≤ I ≤ nV , and an equal number of scalars MI.

The action for bosonic fields including curvature squared

terms can be written as

S =
1

4π2

∫
d5x

√
−g(5)[L0 +L1] (30)



L0 = −2

(
1
4

D −
3
8

R −
1
2

v2
)
+ N

(
1
2

D +
1
4

R + 3v2
)
+ 2NIv

abFI
ab

+ NIJ

(
1
4

FI
abFJab

+
1
2
∂aMI∂aMJ

)

+
1
24

e−1cIJKAI
aFJ

bcFK
deε

abcde

(31)

L1 =
c2I

24

( 1
16

e−1εabcdeAIaCbc f gCde
f g +

1
8

MICabcdCabcd

+
1
12

MID2
+

1
6

FIabvabD −
1
3

MICabcdvabvcd

−
1
2

FIabCabcdvcd
+

4
3

MI∇avbc∇avbc +
4
3

MI∇avbc∇bvca

+
8
3

MI
(
vab∇b∇cvac

+
2
3

vacvcbRb
a +

1
12

vabvabR

)

−
2
3

e−1MIεabcdevabvcd∇ f ve f
+

2
3

e−1FIabεabcdevc f∇ f vde

+ e−1FIabεabcdevc
f∇

dve f −
4
3

FIabvacvcdvdb −
1
3

FIabvabv2

+ 4MIvabvbcvcdvda − MI(vabvab)2
)

(32)



where cIJK and c2I are parameters of the theory,

N =
1
6

cIJK MI MJMK (33)

NI =
1
2

cIJK MJMK (34)

NIJ = cIJK MK , (35)

We now carry out the dimensional reduction on S 2 and

focus on the sector invariant under the S O(3) isome-

try group of S 2. This can be done using the following

ansatz for the five dimensional fields

ds2
= gµν(x)dxµdxν + χ2(x)dΩ2, 0 ≤ µ, ν ≤ 2

vθφ = V(x) sin θ

FI
θφ =

pI

2
sin θ, FI

µν = ∂µAI
ν − ∂νAI

µ ,

(36)

with the mixed components of F I
ab and vI

ab set to zero.



we get the dimensionally reduced action to be

S = −
c2 · p
96π

∫
d3xΩ(3)(Γ)

+

∫
d3x
√
−g
χ2

π

(3
4
+

1
4

N +
c2 · M

288
1

χ2

+
c2 · M

72
V2

χ4
−

c2 · p
288

V

χ4

)
R(3)

+

∫
d3x
√
−g
χ2

π
U(χ, MI,V, pI,D)

+

∫
d3x
√
−g
χ2

π

c2 · M
192

(8
3

R(3)
µνR(3)µν −

5
6

R(3)2

+
16
3χ

R(3)
µν∇µ∇νχ −

4
3χ

R(3)∇2χ

)

+

∫
d3x
√
−gL̃ (χ, vµν, M

I, FI
µν,R

(3)
µν )

(37)



Here L̃ (χ, vµν, MI, FI
µν,R

(3)
µν ) denotes terms which are

at least quadratic in ∇µχ, vµν,∇µMI and FI
µν.

We first need to redefine our metric in such a manner

that the coefficient of R(3) in the second line of the ac-

tion can be absorbed into the metric. We define

g̃µν = ψ
−2gµν (38)

where

ψ−1
=
χ2

π

(3
4
+

1
4

N +
c2 · M

288
1

χ2
+

c2 · M
72

V2

χ4
−

c2 · p
288

V

χ4

)

(39)



we now define

Pµν = R̃µν −
1
2

g̃µν[R̃ + Λ0(φ)]

P = −
1
2

R̃ −
3
2
Λ0(φ)

(40)

where Λ0(φ) is a function to be determined later, and

rewrite the action as

S = − c2 · p
96π

∫
d3xΩ(3)(Γ̃) +

∫
d3x

√
−g̃

[
R̃ + Λ0(φ)

]

+

∫
d3x

√
−g̃PµνK

µν

+

∫
d3x

√
−g̃L̃ (χ, vµν, M

IFI
µν, Pµν, P)

(41)

where

Kµν =
χ2

ψπ

c2 · M
192

[8
3

Pµν −
2
3

g̃µνP +
2
3

g̃µνΛ0(φ) −
16
3ψ
∇̃µ∇̃νψ

+
8

3ψ
g̃µν∇̃2ψ +

16
3χ
∇̃µ∇̃νχ −

8
3χ

g̃µν∇̃2χ

]
.

(42)



Λ0(φ) is a sol. of the equ.

Λ0(φ) = Z(φ) +
χ2

ψπ

c2 · M
384

Λ0(φ)2 , (43)

and

Z(χ,MI,V, pI,D) = ψ3χ
2

π
U(χ, MI,V, pI,D) (44)

In this case the required field redefinition which will re-

move the four derivative terms from the action is

g̃µν → g̃µν + Kµν (45)

To this order the scalar field potential −Λ(φ) is given by

Λ(φ) = Λ0(φ) = Z(φ) +
χ2

ψπ

c2 · M
384

Z2(φ) + O(c2
2) . (46)

This process can now be repeated to remove the six

and higher derivative terms from the action.



Our interest is in finding the exact expression for Λ(φ).

In the AdS 3 background with constant scalar fields and

vanishing tensor fields. We get

F(l, φ) = −6l + l3Z(φ) + 2a
1
l

(47)

where

a =
χ2

ψπ

c2 · M
192

. (48)

The extremum of F(l, φ) with respect to l occurs at

l2ext =
1

Z(φ)
+

1
Z(φ)

√
1 +

2a
3

Z(φ) . (49)

Hence Λ(φ) is given by

Λ(φ) =
32

F(lext, φ)2
=

32Z(φ)
W(φ)

(
2a

Z(φ)
W(φ)

+W(φ) − 6
)−2

(50)

W(φ) = 1 +

√
1 +

2a
3

Z(φ) (51)



Extrema of Λ(φ) are located at

χ =
pb
2

MI
=

pI

pb

V = −
3pb

8

D =
12

p2b2

(52)

where

b3
= 1 +

c2 · p
12p3

(53)

The value of Λ(φ) at it’s extremum is given by

Λ(φ0) =
32π2

p6

[
1 +

c2 · p
8p3

]−2
(54)



Thus the final truncated theory, obtained by setting φ

to its value at the extremum and other matter fields to

zero, is given by

S =
∫

d3x
√
−g̃ (R̃ + Λ(φ0)) −

c2 · p
96π

∫
d3xΩ(3)(̃Γ) .

(55)

From this one can compute the central charges of the

conformal field theory living on boundary of AdS and

is given by

cL = 24π
(√ 2
Λ(φ0)

−
c2 · p
96π

)
= 6p3

+
1
2

c2 · p

cR = 24π
(√ 2
Λ(φ0)

+
c2 · p
96π

)
= 6p3

+ c2 · p

(56)

These results agree with the predictions.



Conclusion

1. For general three dim. theory of (super-)gravity

coupled to arbitrary matter fields with arbitrary set

of higher derivative terms,it is possible to consis-

tently truncate the theory to a theory of pure (super-

)gravity.

2. We have also outlined the procedure for finding

the exact value of parameter of the truncated the-

ory. And the value of Λ(φ) at it’s extremum corre-

sponds to cosmological constant.


