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Motivation

Supergravity solutions are important

• describe low mass d.o.f. of super-string/M theory

• Gauge-gravity correspondence

• Classical solutions such black holes, black rings, p-branes and pp waves

Two popular methods

• Make ansatz for the metric based on isometries.

• Analyzing Killing spinor equations (e.g. finding G-structure).
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For large number of supersymmetries

• G-structure method more involved

• New solutions

Simple case: N=4, D=5 supergravity

{Awada and Townsend NPB255(1985)617}

Method applied to N=2, D=5 case by

{Gauntlett, Martelli, Sparks, Waldram: Class. Quan. Grav. 20(2003)4587}

Generalize method to N=4, D=5 case with Lagrangian ( Bosonic part )
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Content

R symmetry : USp(4)¾

½

»

¼

Content:

USp(4) rep.

em
µ

1

(Aij
µ

5

Bµ)

1

φ

1

Ψi
µ

4

χi

4

f [ij] = iǭiǫj f, fa
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Related by δΨi
µ = 0, δχi = 0 and Fierz relations.
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Properties
Killing vector
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< 0 time-like case

Identification of a Killing vector naturally separates the metric into

a Killing direction and a 3(4)-dimensional base in (null) time-like case
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Isometry generated by Kµ extends to entire solution.
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Null case : R3 structure
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G = G+me+ ∧ em − H−2 ∗3 dH1
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H1 and H2 are harmonic.

ua points out SO(5) ⊃ SO(4) ≃ SU(2)L × SU(2)R.
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Time-like case : SU(2) structure

f2 = (fa)2

ds2 = −(H1H2
2)

−2/3(dt + ω)2 + (H1H2
2)

1/3hmndxmdxn,

G = −d[H−1
1 (dt + ω)] − G+

1 , F a = d[uaH−1
2 (dt + ω)] + uaG+

2 ,
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Time-like case : SU(2) cont’d

V a = uaK Φ = Φ(6)ab

iKΦ(6)ab = 0

Φ(6)ab = 1
2
ǫabcdeucΦ(6)de

fΦ(6)ab + ∗(K ∧ Φ(6)ab) = 0

Φ(6)ab resides in

Tangent space group SU(2)− ⊂ SO(4) ⊂ SO(4, 1),

and internal symmetry group SU(2)+ ⊂ SO(4) ⊂ SO(5).

In N = 2 case, we have SU(2) holonomy, here only SU(2) structure.
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Time-like case : Id structure

(fa)2 > f2

ua = fa/|fa| V a
µ = uaV

(1)
µ + V

(4)a
µ

Metric: ds2 = −(fa)2(dt + ω2) + ((f b)2 − f2)−1V
(4)a
µ V

(4)a
ν

uaV
(4)a
µ = 0.

Local frame is completely determined by Killing spinor.

The gauge fields can be written explicitly in terms of various forms.
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Summary

• We analyzed N =4, d=5 ungauged supergravity

starting from fermionic e.o.m.s

• We identified 3 broad classes into which the solutions

can be catagorized based on G-structure.

• Previously known solutions for N=2 belong to a

particular case of the solutions with rigid ua.

• We also found solutions for non-rigid ua case, though

they are singular.
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