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Motivation

[Witten]

Twistor String Theory: Proposed correspondence between
the open string sector of the topological B-model on |||CP3|4

and perturbative N = 4 SYM.
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These amplitudes are reproduced by nonperturbative effects
in a holomorphic Chern-Simons theory with supertwistor space
as the target space. The isometries of |||CP3|4 linearly encode
the superconformal symmetry of N = 4.

Simplicity of gauge theory amplitudes in fixed helicity basis.
The MHV n-point gluon amplitude is proportional to

holomorphic or antiholomorphic functions of the λi, depending on whether the helicities

are mostly + or mostly −.

To describe the results more precisely, we take the gauge group to be U(N) (for some

sufficiently large N as to avoid accidental equivalences of any traces that we might en-

counter). We recall that tree level diagrams in Yang-Mills theory are planar, and generate

a single-trace interaction [14]. In such a planar diagram, the n gauge bosons are attached

to the index loop in a definite cyclic order, as indicated in figure 1. If we number the

gauge bosons so that the cyclic order is simply 1, 2, 3, . . . , n, then the amplitude includes a

group theory factor I = Tr T1T2 . . . Tn. It suffices to study the amplitude with one given

cyclic order; the full amplitude is obtained from this by summing over the possible cyclic

orders, to achieve Bose symmetry. Gluon scattering amplitudes considered in this paper

are always proportional to the group theory trace I, and this factor is omitted in writing

the formulas.
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Fig. 1: n external gluons cyclically attached to the boundary of a disc, representing

the group theory structure of a Yang-Mills tree diagram.

Suppose that gauge bosons r and s (1 ≤ r < s ≤ n) have negative helicity and the

others have positive helicity. The reduced tree level amplitude for this process (with the

energy-momentum delta function and the trace I both omitted) is

A = gn−2 〈λr, λs〉4∏n
i=1〈λi, λi+1〉

. (2.14)

(Here g is the gauge coupling constant, and we set λn+1 = λ1.) Note that this amplitude

has the requisite homogeneity in each variable. It is homogeneous of degree −2 in each λi

with i %= r, s, since each λi appears twice in the denominator in (2.14). But for i = r, s, it
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where pαα̇ = λαλ̃α̇ and 〈λi,λj〉 = εαβλα
i λβ

j .



Development of MHV-formalism on gauge theory side even
for less or non-susy YM. [Cachazo-Svrček-Witten]
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Unfortunately, the correspondence doesn’t hold beyond tree
level. Contributions from closed string B-model sector and
appearance of conformal supergravity modes in the gauge the-
ory loops. [Berkovits-Witten]

But the twistor-inspired MHV-rules can be extended at loop
level for N = 4. Also for N = 1 and pure YM.
[Brandhuber-Spence-Travaglini]
[Bedford-Brandhuber-Spence-Travaglini]

What is the quantum completion of Witten’s twistor string?
Some (non-topological?) B-model extension with modified
target space?



Most obvious candidates should be theories that preserve
conformal invariance at loop level, order-by-order:UV-finite

Look at N = 2 finite theories with fundamental matter:

N = 2 Sp(Nc) gauge theory with Nf = 4

Towards this end study the range of 4d gauge theories with
less susy, which admit a tree-level twistor string description.
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N = 2 SU(Nc) gauge theory with Nf = 2Nc

N = 1 exactly marginal deformations of N = 4
[Kulaxizi-Zoubos]
 

 

[Giombi-Kulaxizi-Ricci-Robles-Llana-Trancanelli-Zoubos]
[Park-Rey]
N = 1, 2 quiver gauge theories as discrete |||CP3|4 orbifolds



Outline
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   The N = 2 Sp(Nc) theory with Nf = 4

Review of the N = 4 theory   

   Introducing topological ‘flavour’-branes

   Conclusions and Outlook



This is now a suitable target space for the B-model.
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Review of the N = 4 theoryar
X
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Marginal Deformations of Tree–Level N = 4 SYM from

Twistor String Theory

Manuela Kulaxizi1,∗ and Konstantinos Zoubos2,∗∗

1, C. N. Yang Institute for Theoretical Physics, State University of New York,

Stony Brook, New York 11794-3840, U.S.A.
2, Queen Mary, University of London, Mile End Road, London E1 4NS, U.K.

The topological B–model with target the supertwistor space |||CP3|4 is known to describe perturbative ampli-
tudes of N = 4 Super Yang–Mills theory. We review the extension of this correspondence to the supercon-
formal gauge theories that arise as marginal deformations of N = 4 by considering the effects of turning on
a certain closed string background, which results in non–anticommutativity in the fermionic directions of
|||CP3|4. We generalise the twistor string prescription for amplitudes to this case and illustrate it with some

simple examples.

Witten’s original formulation of twistor string theory [1] relates the perturbative expansion of N = 4
Super Yang–Mills theory to the D-instanton expansion of the topological B-model on supertwistor space
|||CP3|4. The motivation for this reformulation was the fact that certain Yang–Mills amplitudes are much

simpler than one would expect from the properties of the individual Feynman diagrams they are composed

of. Witten’s proposal led to the development of very efficient calculational tools for scattering amplitudes

in gauge theories, some aspects of which are summarised in the review papers [2, 3].

The starting point for the gauge theory/twistor string correspondence is the fact that gauge theory tree

amplitudes take a particularly simple form when written in a basis where the helicities of the external

particles are fixed. For instance, the maximally helicity violating (MHV) n–point amplitude with n − 2
positive helicity and 2 negative helicity gluons is proportional to the subamplitude

A(n) =
〈n − 1, n〉4

〈12〉〈23〉 . . . 〈n1〉
(1)

where the negative helicity gluons are labeled by n− 1 and n. Here we have decomposed the momenta of

the incoming particles in terms of commuting spinors λ, λ̃ as pαα̇ = λαλ̃α̇ and defined the holomorphic

inner product 〈ij〉 = εαβλα
i λβ

j . To recover the full amplitude for this process we have to add a colour trace

for each cyclic ordering and sum over all subamplitudes, and also incorporate a momentum conservation

delta function which we have suppressed.

The crucial property of (1) is the holomorphic dependence on the spinors λi. As discussed in [1], this

implies that MHV amplitudes are supported on genus zero, degree one curves on twistor space, which is a

copy of |||CP3 defined by the homogeneous coordinates (λα, µα̇), where the µα̇ are related to λ̃α̇ as

λ̃α̇ → i
∂

∂µα̇
, −i

∂

∂λ̃α̇
→ µα̇. (2)

Non–MHV amplitudes with q negative helicity gluons were similarly shown to be supported on curves of

degree q − 1 in twistor space.

In [1] this fact was combined with the observation that if one adds four fermionic coordinates ψA (and

their conjugates) to |||CP3, the resulting supermanifold |||CP3|4 is Calabi–Yau, in the sense of admitting a

∗ Email: kulaxizi@insti.physics.sunysb.edu
∗∗ Email: k.zoubos@qmul.ac.uk . Talk presented at the RTN meeting “Constituents, Fundamental Forces and Symmetries of the

Universe”, Corfu, Greece, Sept. 20-26, 2005.

Write null momenta in terms of pαα̇ = λαλ̃α̇. Twistor space
is a copy of |||CP3 defined by the homogeneous coordinates
ZI = (λα, µα̇), where

Witten showed that holomorphic λ dependence of the MHV
amplitudes means they are supported on genus zero, degree
one curves in twistor space, |||CP1 ⊂ |||CP3.

Adding four fermionic co-ordinates ψI plus conjugates turns
|||CP3 into a super-CY: |||CP3|4.



Via the Penrose transform the component fields get mapped to
specific helicity particles in Minkowski space:

N = 4 spectrum
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2 Preliminaries

In this section we first will derive the spacetime action of our theory starting from its N = 1
superspace formulation, and then briefly review how this gauge theory is realised within IIB string
theory as the worldvolume theory of D3–branes probing D7–branes localised on an orientifold
singularity.

[KZ—I have the feeling it might be best to swap these two sections, i.e. put the F-theory stuff first. Just so that

we don’t scare people off with all the action details from the very beginning. Also, it helps to motivate the theory a

bit.]

2.1 The space-time action

The field content of our theory can be summarised in the following table:

N = 2 Superfield Components Sp(N) Representation
V A, λa, φ,φ†, λ̄a, G Adjoint
Z ζ, ζ ′, za, z†a, ζ̄, ζ̄ ′ Antisymmetric
Q η, η′, qa, q†a, η̄, η̄′ F + F̄

where we have suppressed the flavour index X = 1 . . . 4 on the fundamental hypermultiplet.
However, as a starting point for deriving the lagrangian of the theory, we will take its formulation

in terms of N = 1 superfields. The N = 1 superspace lagrangian is then easily seen to be:

L =
1
8π

Im Tr
[
τ

(∫
d2θ WαWα + 2

∫
d2θd2θ̄ e2V Φ†e−2V Φ

)]
+

∫
d2θd2θ̄ Q†Ie−2V QI

+
∫

d2θd2θ̄ Q̃Ie2V Q̃†
I + Tr

(∫
d2θd2θ̄ e2V Z†e−2V Z +

∫
d2θd2θ̄ e−2V Z ′e2V Z ′†

)

+
√

2
(∫

d2θ(Q̃IΦQI + Tr
(
Z ′[Φ, Z]

)
) + h.c.

)
.

(1)

2.2 Review of the IIB/F-theory embedding

In order to motivate the Nf = 4 theory, it is useful to review the original context in which it
appeared, namely Sen’s explorations of F-theory on K3 at its orbifold limit, where it reduces to an
orientifold of IIB string theory on T 2.

3 Twistor strings

3.1 Review of the dual for N = 4 SYM

The fields of N =4 are (A, λI , φIJ , λ̃I , G) in the adjoint of SU(N) and so the superfield expansion
in this case is

A = A + ψIλI +
1
2!

ψIψJφIJ +
1
3!

εIJKLψIψJψK λ̃L +
1
4!

εIJKLψIψJψKψLG . (2)

As shown by Witten in [7], the string field theory of the B–model with a Calabi–Yau target space
is simply a holomorphic version of Chern–Simons theory. The extension of this to the supermanifold
case leads to the following target space action on |||CP3|4:

S =
1
2

∫

CP3|4
Ω ∧ Tr(A∂̄A+

2
3
A ∧A ∧A) , (3)

3

defined on a ‘D5’-brane sitting at the locus ψ̄Ī = 0. The
superfields A can be expanded as

S =
1
2

∫

D5
Ω ∧ Tr

(
A · ∂̄A +

2
3
A ∧A ∧A

)

The B-model open string d.o.f. are described by the hCS action
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Recover all MHV amplitudes - Extension to next-to-MHV etc.

How about interactions? These correspond to those of self-
dual N = 4. The full interactions arise non-perturbatively
through D1–instantons wrapping the holomorphic genus zero,
degree one curves with |||CP3|4 embedding [Witten],[Nair]

µα̇ + xαα̇λα = 0 and ψI + θI
αλα = 0 .

with the J ’s being D1-instanton world-volume currents and the
wi’s the external particle wavefunctions.

symmetries are identified in the twistor string description, a claim which we will verify during the

comparison of amplitudes between the two theories.

In summary, we have introduced four Df branes parallel to the superorientifold plane which

account for the Sp(2) part of the flavour symmetry. Via the Penrose transform, this yields the right

spectrum for the fundamental hypermultiplets in the Nf = 4 theory and mimics the behaviour

of the D7–branes in the physical string setup. As we further discuss in the conclusions, it would

be intriguing if there were a mechanism which exactly fixes the number of Df branes in the B–

model to four (two plus two mirrors), e.g. some analogue of the RR charge cancellation condition

in string theory. The existence of such a mechanism would suggest (as expected perhaps) that our

construction is only consistent at loop level for the precise case when the dual gauge theory is finite.

4 Comparison of amplitudes

Having reproduced the spectrum of the Nf = 4 theory, we will now establish the duality on firmer

grounds by calculating amplitudes in both the gauge theory and topological string theory, and by

showing precise agreement (up to a constant normalisation factor).

4.1 Review of the standard amplitude prescription

We will begin by briefly summarising the prescription of [2] for the calculation of colour-stripped

partial amplitudes in N = 4 SYM. As we indicated above, this reduces to the evaluation of partic-

ular correlators on the worldvolume of D1–instantons wrapping curves of a certain degree in |||CP3|4

and then integrating over the moduli space of such curves. For tree–level MHV amplitudes, the

D1–instantons are localised [2] on |||CP1s in |||CP3|4 with the embedding given by

µα̇ + xαα̇λα = 0 and ψI + θI
αλα = 0 , (4.1)

where Zm = (λα, µα̇) and ψI are the supertwistor space coordinates, while the moduli xαα̇ and θI
α

correspond to the coordinates of 4d Minkowski space and (on–shell) N = 4 superspace respectively.

Following an idea due to Nair [4], the gauge theory amplitudes are reproduced by correlation

functions of chiral currents on the worldvolume of these D1–instantons. Since the insertion of

these objects explicitly breaks the isometries of |||CP3|4, one must integrate over the moduli space

of instantons of the appropriate degree. The prescription for the calculation of tree-level MHV

amplitudes, and therefore integration over degree one, genus zero curves, is then

A(n) = g2
∫

d4x d8θ 〈
∫

CP1
J1w1 · · ·

∫

CP1
Jnwn〉 , (4.2)

where Ji are D1 worldvolume free–fermion currents coupling to the external D5–brane fields (includ-

ing both the colour and flavour-branes in our case), while the wi’s are the twistor space equivalents

of wavefunctions for the external particles. The lower index i = 1, . . . , n indicates the position of

22

These are the same curves onto which the MHV amplitudes
are localised. By integrating over the moduli space (x, θ) we
get the amplitude prescription
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The N = 2 Sp(N) theory with Nf = 4

[Sen], [Banks-Douglas-Seiberg],

Physical string realisation: N D3’s living at an O7 plane
with 4 D7 branes. The near horizon geometry on the D3’s
is AdS5 × S5/Z2.
[Fayyazuddin-Spalinski], [Aharony-Fayyazuddin-Maldacena]

The massless open string d.o.f can be summarised in
[Gava-Narain-Sarmadi]

Let us summarise the setup and field content of the above physical-string configuration: We

will consider the low energy worldvolume action on a stack of N coincident D3–branes (and their

mirrors) living in the (x0, . . . , x3) directions. These probe the background generated by 4 D7s

(and their mirrors) and a single O7–plane lying in (x0, . . . , x7). The orientifold plane is added in

such a way so as to preserve the same 8 supersymmetries as the D3–D7 system and the 3-3 and

7-7 strings would generate respective SU(2N) and SU(8) gauge symmetries. However, since all

the branes are sitting at the orientifold fixed plane, these project to Sp(N) and SO(8) because of

the orientation reversal action on the open string Chan-Paton indices, which imposes symmetric or

antisymmetric conditions on the gauge group matrices. Ramond-Ramond (RR) tadpole cancellation

further restricts one to only retain antisymmetric matrices for the D7s; one is then forced to consider

symmetric matrices for the D3s [48].

In the low-energy limit, the dynamical fields corresponding to 7-7 strings decouple and SO(8)

becomes a global symmetry of the system. The massless spectrum of 3-3 strings fluctuating in the

worldvolume (x0, . . . , x3) and overall transverse (x8, x9) directions yields the degrees of freedom cor-

responding to the N =2 vector multiplet in the adjoint (symmetric) representation of Sp(N). The

fluctuations in the directions relatively transverse to the D3s (x4, . . . , x7) furnish a hypermultiplet

transforming in the antisymmetric tensor representation of the gauge group, which captures the

motion of the D3s in these directions. Therefore, the low energy D3 worldvolume action describes

4d N =2 SYM with gauge group Sp(N), four hypermultiplets in the fundamental and one in the

antisymmetric representation, sitting at the conformal point of its moduli space.

Component SO(1, 3) SU(2)a SU(2)A U(1)R Sp(N) SO(8)

A,G (2, 2) 1 1 0 N(2N + 1) 1

φ (1, 1) 1 1 +2 N(2N + 1) 1

φ† (1, 1) 1 1 −2 N(2N + 1) 1

λα,a (2, 1) 2 1 +1 N(2N + 1) 1

λ̄α̇,a (1, 2) 2 1 −1 N(2N + 1) 1

zaA (1, 1) 2 2 0 N(2N−1)−1 1

ζα,A (2, 1) 1 2 −1 N(2N−1)− 1 1

ζ̄α̇,A (1, 2) 1 2 +1 N(2N−1)− 1 1

qM
a (1, 1) 2 1 0 2N 8

ηM
α (2, 1) 1 1 −1 2N 8

η̄M
α̇ (1, 2) 1 1 +1 2N 8

Table 1: The on-shell field content of the Nf = 4 theory in component form. The representations

in the first column are actually in terms of the Euclidean Lorentz group SO(4) ∼ SU(2)L ×SU(2)R.

The fundamental fields carry an SO(8) flavour index M = 1, . . . , 8, while the antisymmetric fields

an SU(2) ‘flavour’ index A = 1, 2. Note that (z, ζ, ζ̄) transform in the irreducible second–rank

antisymmetric representation of Sp(N), which in the text we call “antisymmetric” for brevity. We

write SO(8) rather than the more accurate O(8) since we will not keep track of discrete groups.

6
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The flavour symmetry group in this notation is given under
the maximal embedding U(1) × SU(4) ⊂ SO(8). An addi-
tional series of helicity-dependent rescalings leads to the self-
dual truncation:

The gauge theory Lagrangian is in N = 1 superfield
formulation:

1/12/06
(Costis)

Expansion around the ‘self-dual’ point

After having had a lot of grief with Alvarez-Gaumé and Hassan, I will be using some modified version of
their conventions, which have an important mistake. The notation is the usual unhelpful gauge theory one
but I’ll be telling you which spacetime fields correspond to which HCS one-form components at the end.
Our signature is (+−−−). The raising and lowering of the indices is performed by

ψα = εαβψβ , ψα = εαβψβ

ψ̄α̇ = εα̇β̇ψ̄β̇ , ψ̄α̇ = εα̇β̇ψ̄β̇ . (1)

We also have the following relations between the superspace variables

θ2 = θαθα = −2θ1θ2 , θαθβ = −1
2
εαβθ2

θ̄2 = θ̄α̇θ̄α̇ = 2θ̄1̇θ̄2̇ , θ̄α̇θ̄β̇ = −1
2
εα̇β̇ θ̄2 . (2)

The appropriate definitions for the ε-tensors are

εαβ = εα̇β̇ =
(

0 1
−1 0

)
, (3)

where the above satisfy εαβεβγ = δα
γ and εα̇β̇εβ̇γ̇ = δγ̇

α̇, as opposed to the conventions that we have established
for the gauge indices transforming in Sp(N) and the global SU(2) symmetries. These give rise to the following
definitions and identities

(σ̄µ)α̇α = εαβεα̇β̇σµ

ββ̇
, θσµθ̄θσν θ̄ =

1
2
θ2θ̄2ηµν

χσµψ̄ = −ψ̄σ̄µχ , (χσµψ̄)† = ψσµχ̄ . (4)

The idea is to write out the full action for Sp(Nc/2), N = 2 SYM with four massless fundamental
hypermultiplets and an additional hypermultiplet in the antisymmetric representation and then to perform
an appropriate rescaling of the fields in such a way that we can take a g = 0 limit of the theory, which yields
the so called ‘self-dual’ part. The rest of the theory is then obtained as a perturbation around that point.
The main thing about the rescalings is that they treat the helicities asymmetrically. The full Lagrangean
for the above, in terms of N = 1 superfields, is given by

L =
1
8π

Im Tr
[
τ

(∫
d2θ WαWα + 2

∫
d2θd2θ̄ e2V Φ†e−2V Φ

)]
+

∫
d2θd2θ̄ Q†Ie−2V QI

+
∫

d2θd2θ̄ Q′Ie2V Q′†
I + Tr

(∫
d2θd2θ̄ e2V Z†e−2V Z +

∫
d2θd2θ̄ e−2V Z ′e2V Z ′†

)

+
√

2
(∫

d2θ(Q′IΦQI + Tr (Z ′[Φ, Z])) + h.c.

)
.

(5)

which is the gauge invariant form of the action. I am using the fact that fields transforming in the fundamental
should have indices up, the ones in the anti-fundamental indices down and everything else has its left index
up and the right one down. One can raise and lower indices using the “NW-SE” rule with the Ω’s, the
invariant tensors of Sp(Nc/2). These are given by Ω = Ω−1 = iσ2 ⊗ 1Nc×Nc and, since the Ω’s are real, we
will have that ΩikΩkj = −δi

j .
Since we are constructing thisN = 2 action out ofN = 1 quantities, the coupling appearing in front of the

superpotential terms can, in principle, be different to the coupling of the kinetic terms for the N = 2 vector
multiplet. However, supersymmetry requires that they all be the same (see top of p. 156 of Sohnius’ review).
The N = 2 vector multiplet comprises of the N = 1 vector and chiral superfields (V,Φ), the antisymmetric
hypermultiplet of the chiral and anti-chiral (Z, Z ′†) and the four fundamental hypermultiplets of the four
chiral and four anti-chiral (Q, Q̃†) superfields respectively. The index on the latter runs over I = 1, . . . , 4,

1

is what we have so far), 8s = 41 + 4̄−1, it should be relatively clear how the groupings in eq. (7) come up.
As far as raising and lowering the M index, we don’t really understand how that works at the level of the
components (admittedly we haven’t tried very hard), so we’ll stick to the definitions of things with M index
up and down for the moment, which seem to work well.

The scalar potential (quartic) terms will then be

V = g2 Tr
(

1
2
[φ†, φ]2 +

1
4
[za

A, zA
b][z

b
B , zB

a]− [za
A, φ][φ†, zA

a]
)

− g2

(
1
2
qa

M{φ†, φ}qM
a +

1
4
qa

M [zb
A, zA

a]qM
b

)

+
g2

8
(
(qa

MqN
a)(qb

NqM
b) + (qa

Mqb
N )(qN

aqM
b)

)
,

(8)

where indices are once again implicit with Sp(N) being contracted SW-NE and SU(4) NW-SE and in the
last line the ()’s denote Sp(N) colour singlets. This allows us to finally write down the full action in its most
compact form

L =Tr
[
−1

2
GF + D̃φ†Dφ + iλ̄a "Dλa − λaλaφ† + 2g2λ̄aλ̄aφ

]
+ Tr

[
−1

2
D̃za

ADzA
a

+iζ̄A "DζA − za
A[λa, ζA] + 2g2zA

a[ζ̄A, λ̄a] + ζAζAφ− 2g2ζ̄Aζ̄Aφ†]− 1
2
D̃qa

MDqM
a

− iη̄M "DηM + qa
MλaηM − 1

2
ηMφηM + 2g2

(
η̄M λ̄aqM

a −
1
2
η̄Mφ†η̄M

)

+ g2

(
1
2
qa

M{φ†, φ}qM
a +

1
4
qa

M [zb
A, zA

a]qM
b

)
− g2

8
(
(qa

MqN
a)(qb

NqM
b) + (qa

Mqb
N )(qN

aqM
b)

)

− g2 Tr
(

1
2
[φ†, φ]2 +

1
4
[za

A, zA
b][z

b
B , zB

a]− [za
A, φ][φ†, zA

a]
)

.

(9)

The self dual truncation of the above, which we will be comparing to the twistor action, is simply

L =Tr
[
−1

2
GF + Dφ†Dφ + iλ̄a "Dλa − λaλaφ†

]

− Tr
[
1
2
DzaADzAa + iζ̄A "DζA + zaA[λa, ζA] + ζAζAφ

]

− 1
2
Dqa

MDqM
a − iη̄M "DηM + qa

MλaηM − 1
2
ηMφηM .

(10)

Next let’s also write down the twistor action of Jamestinos (JB-070207) also using the new ideas of
KZ-180207. This should be

SHCS =
∫

CP3
Ω′ ∧ Tr[G ∧ F + φ† ∧ D̄φ− λ̃a ∧ D̄λa + λa ∧ λa ∧ φ† +

1
2
zAa ∧ D̄zaA

− ζ̃A ∧ D̄ζA + zaA ∧ λa ∧ ζA + ζA ∧ ζA ∧ φ] + η̃XA ∧ D̄ηAX

− 1
2
qaAX ∧ D̄qaAX + qaAX ∧ λa ∧ ηAX − 1

2
ηAX ∧ φ ∧ ηAX ,

(11)

with
Ω′ =

1
4!

εIJKLZIdZJdZKdZL (12)

and the ‘covariant derivatives’ being defined as D̄ = ∂̄ +A∧ for fundamental fields and D̄ = ∂̄ +A∧+∧A for
matrix-valued fields. Note that Jamestinos somehow managed to miss out on one of the interaction terms
between the adjoint and anti-symmetric multiplets, namely the second one in the second row, as well as
the corresponding one in the fundamental sector. The above should be coming from the following action in
supertwistor space

S =
1
2

∫

D5
Ω ∧

(
Tr[A · ∂̄A+

2
3
A ∧A ∧A] +QX · ∂̄QX +QX ∧A ∧QX

)
, (13)

3



We still need to recover the fundamental d.o.f.
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On the twistor side we perform a super-orientifold

; a = 1, 2 , A = 3, 4

which implies that the orientifold should act on the fermions ψI asymmetrically, in order to break

the SU(4)R symmetry. Therefore, we begin by splitting the four fermionic coordinates ψI of |||CP3|4

into I = {a,A}, with a = 1, 2 and A = 3, 4. The appropriate orientifold action is the combination of

a Z2 orbifold (acting trivially on the Chan–Paton indices), the worldsheet parity transformation ω̂

and an action on the Chan-Paton indices brought about by acting with an antisymmetric hermitian

matrix γ̃ = iΩ, where Ω2N×2N is the Sp(N) invariant tensor (see appendix A)

(a) ψa → ψa , ψA → −ψA

(b) Ai
j → Ωik(AT ) l

k Ωlj = (AT )i j ≡ A i
j ,

(3.11)

which is a superorientifold operation in |||CP3|4.13 Note that the orbifold action (a) breaks the

fermionic coordinate symmetry SU(4)R → SU(2)a × SU(2)A.14 Also note that it leaves the holo-

morphic volume form (3.8) invariant, indicating that the target space is still super–CY and that we

can legitimately define a proper B–model action. In (b) we have used Ω to raise and lower indices.

Requiring A to be invariant under this operation (which, on lowering indices, translates to

Aij = Aji), and considering its action on the various component fields in the expansion (3.6), it is

easy to see that one obtains the following decomposition
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3ψ4ψcλ̃d + ψ1ψ2ψ3ψ4G)
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= V + ψAZA

= V + Z ,

where in the first line we have collected the terms (V) which are symmetric (when both indices are
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By repeating the analysis performed for the N = 4 theory and studying the linearised classical
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︸ ︷︷ ︸

fields of helicity (1 − k/2) in Mink. space

Z =
︷ ︸︸ ︷

(0, ζA, zaB , ζ̃A, 0)
Penrose←→

︷ ︸︸ ︷

(0, ζA, zaB , ζ̄A, 0) (3.13)

13In writing (b) we have assumed that, as in the physical string case [48], ω̂ has eigenvalue −1 on the (0, 1)–form

vertex operator A. This minus combines with the i2 from γ̃ = iΩ to give an overall plus in (b).
14We choose the subscripts having in mind the eventual identification of these symmetries with their spacetime

counterparts.
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Introducing topological ‘flavour’-branes

These are objects localised at the super-orientifold fixed plane
(the locus ψA = 0, ψ̄ā,Ā = 0). We will drop the ‘D5’ termi-
nology in favour of Dc (colour) and Df (flavour).
The boundary conditions for open strings stretching between
the Dc and Df branes can be summarised as

and we have, therefore, obtained the adjoint and antisymmetric sector of the Nf = 4 theory.

However, to complete the derivation of the spectrum on the twistor side, we still need to recover

the fundamental degrees of freedom, to which we now turn our attention.

3.4 Flavour-branes and the Fundamental Sector

By analogy with the IIB string description, it should be clear that incorporating the fundamental

fields of the Nf = 4 theory will require the introduction of a new object in twistor space. We will

implement this by adding a new kind of brane to our configuration, which we will call a ‘flavour’-

brane, as it roughly corresponds to a D7–brane in the physical string setup, in the sense that strings

stretching between the ‘D5’s and the flavour-branes will lead to the fundamental hypermultiplets.

Recall from Section 2.1 that in the IIB picture the D7–branes were located on the orientifold

plane defined by (x8, x9) → −(x8, x9). We will similarly take the flavour-branes to lie on the fixed

point set of our orientifold action (ψA → −ψA), by imposing Dirichlet conditions in the ψ3,ψ4

directions. We will also keep the Dirichlet condition on the antiholomorphic ψ̄Ā directions. Since

these new branes still extend along the bosonic directions of |||CP3|4 (as well as the fermionic ψa

directions), from now on we will drop the possibly misleading ‘D5’ terminology and label the branes

discussed in the last section (which led to the gauge group Sp(N)) as ‘Dc’ (for colour) and the new

branes as ‘Df ’ (for flavour). We summarise the boundary conditions satisfied by open strings

stretching between the branes in our setup in Table 2.

Direction Dc–Dc Dc–Df Df–Df

Z,Z̄ NN NN NN

ψa NN NN NN

ψA NN ND DD

ψ̄ā,ψ̄Ā DD DD DD

Table 2: Boundary conditions for open strings in the B–model setup.

Having chosen the boundary conditions defining a Df brane, we will now need to decide on a)

how many of them to introduce and b) how the orientifold and orbifold groups act on the Chan–

Paton indices associated with these branes. For the first question, it turns out that (as will become

clear shortly) introducing two Df branes, which along with their mirrors lead to a 4 × 4 Chan–

Paton group, is what is necessary to reproduce the Nf = 4 theory. We will call the corresponding

indices X,Y, . . . = 1, . . . , 4. As for the second question, recall that for the Dc branes we chose the

orientifold action γ̃c = iΩ2N×2N , but the action of the orbifold was trivial: γc = I2N×2N . With

an eye to the results we want to obtain, we will again choose the orientifold action antisymmetric

(γ̃f = iΩ4×4), but this time we take γf = −I4×4. Thus, the full specification of our orientifold

15

The c− f (f − c) strings will yield the required fundamental
hypermultiplets.

12
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We will first understand the f − f strings, obtained by a
fermionic analogue of dimensional reduction from the c − c
strings.

This is related to the problem of understanding states on
sub-supermanfolds of supermanifolds and is achieved by con-
sidering the dependence on the fermionic coordinates only in
certain combinations. This, in turn, can be implemented in
terms of a set of integral constraints.
[Lechtenfeld-Popov],[Sämann]

the following eight equations (which are a subset of the truncation conditions considered in [89])
∫

d4ψψ1ψ2ψAK =

∫

d4ψψaψAK =

∫

d4ψψAK = 0 . (3.15)

These conditions restrict the ψ dependence of K to take the following form

KX
Y = dZ̄m̄

(

K(Z, Z̄,ψa)m̄
X
Y + ψ3ψ4L(Z, Z̄,ψa)m̄

X
Y

)

. (3.16)

It is easy to check that requiring invariance under the orientifold action results in a symmetric

truncation of the Chan–Paton matrix defined by the X,Y indices and thus K is a 4 × 4 matrix

transforming in the adjoint of an Sp(2) group. Thus we have specified the (0,1)–form part of the

f − f spectrum.

However, as can be seen in (3.4), the existence of holomorphic DD directions implies that the

(0, 1)–forms do not exhaust the possible vertex operators that can be written down at ghost number

one. One can now also have states of the form

BAθA ∼ BA(Z, Z̄,ψa,ψA)
∂

∂ψA
. (3.17)

Motivated by dimensional reduction in the physical string case, and in particular by the desire to

have the same counting of states before and after the reduction, we will assume that the fermionic

dependence of these DD f − f states arises by considering the complement of the eight equations

in (3.15).17 This will restrict the general expansion for B to

BA(Z, Z̄,ψ)XY

∂

∂ψA
= ψBBA

B(Z, Z̄,ψa)XY

∂

∂ψA
. (3.18)

Requiring invariance under the orientifold action (under which we also have ∂/∂ψA → −∂/∂ψA)

once again restricts the Chan–Paton indices to be those of Sp(2). It is straightforward to check

that ψBBB(Z, Z̄,ψa) provides 4 fermionic and 4 bosonic degrees of freedom, which, together with

K, give the expected counting of states for the 8d N = 1 theory on the D7–brane (note that in this

counting we suppress the index corresponding to the expansion of B in a basis of T (1,0), in the same

way that we have been suppressing the form index z̄ for the (0,1)–form states). These states, not

being (0,1)–forms, are clearly unsuitable for a straightforward application of the Penrose transform

to four dimensions. This is not unexpected, since their natural dual interpretation would be as

states of the eight–dimensional D7–brane theory. We will further comment on such a potential

interpretation at the end of this section.

It should also be pointed out that, again because they are not (0,1)–forms, there seems to be no

obvious way to include the B states in a holomorphic Chern–Simons–type action (which would still

need to be integrated over a (3,3)–cycle), and in particular we cannot write down the action on the

Df worldvolume including these terms by dimensional reduction (unlike the case for bosonic DD

17This becomes clearer if one chooses to reduce along all four ψI directions, as in [89]. In that case one imposes

14 equations in the NN sector, so the (0,1)–strings provide just two degrees of freedom. The remaining states should

then arise from the DD sector, therefore we would want to impose just two equations on that sector.

17

For our purposes, we will take the f − f states to be de-
pending on the nilpotent coordinate y = ψ3ψ4, with ψ1,ψ2

unrestricted. The integral constraints realising this on a given
state K are
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However, because of the holomorphic DD b.c.’s along ψA

one can also write down BA(Z, Z̄, ψa,ψA)∂/∂ψA as physi-
cal vertex operators. We will consider the subset of these
constrained by the complement of the NN integral equations.
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17

This completes our proposal for the fermionic dimensional
reduction.

NB: The total number of d.o.f before and after the reduction
is the same, with the d.o.f from B and K giving the expected
counting of states of the 8d N = 1 D7–brane theory.
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Return to considering the c − f (f − c) states. These are
expressed as

directions, see e.g. [91]). Perhaps a suitable generalisation of the hCS action, along with a more

rigorous definition of our integration measure, would be able to accommodate this more general

case, but since for the purposes of this paper we will only need to know the Dc brane action, which

is what is expected to have a relation to the 4d theory that we are interested in, we will not pursue

this question further here.

Clearly the choice of the above geometric embedding of the Df branes within |||CP3|4 has been

based on rather heuristic arguments, and, although it certainly seems to provide a consistent

picture, we cannot claim that it is the unique possibility. It would certainly be desirable to obtain

a more fundamental understanding of this embedding starting from the basic definition of Dirichlet

boundary conditions on the B–model worldsheet. Leaving this for future work, we will now turn

to the last aspect of our construction, i.e. the strings stretching between the Dc and Df branes.

Therefore, we finally consider the c− f and f − c strings. Recall that these are the real reason

to introduce the Df branes, since they will provide the desired fundamental matter. Looking at

Table 2, and recalling that (topological) DN strings do not have zero modes and thus do not provide

B–model states, the only contributions arise from the NN sector. Suppressing the (0, 1)–form index,

these can be usefully written as an expansion in ψA

Qi
X = P (Z, Z̄,ψa)i X + ψAQA(Z, Z̄,ψa)i X + ψ3ψ4R(Z, Z̄,ψa)i X (3.19)

and similarly for the f − c field QX
i. Note that, due to the orientifold action (3.14.b), the c− f and

f − c states are related by the condition

QX
i = ΩijQj

Y ΩY X . (3.20)

It is easy to check that the other components of (3.14) impose P i
X = Ri

X = 0 and thus dictate

that the c − f and f − c states are given by

Qi
X = ψAQi

AX , QX
i = ψAQX

A i , (3.21)

where we can expand

Qi
AX = ηi

AX + ψaqi
aAX + ψ1ψ2η̃i

AX (3.22)

and similarly for QX
Ai. Recall that here i is an Sp(N) gauge group index, A is an index of SU(2)A

and (as we previously derived) X is an index of Sp(2). The particular form of Q is not new: As

shown in [37,92], this is the precise twistor field content (for each value of X) corresponding to an

N = 2 hypermultiplet!18 We conclude (and will make more precise shortly) that our orientifolding

procedure has produced a hypermultiplet Qi
AX in the fundamental representation of Sp(N).

Let us now investigate its transformation properties under the two global groups, given by the

indices A and X. As we reviewed in Section 2.2, the fundamental hypermultiplets should also

transform in the fundamental representation of the global SO(8) flavour group. However at the end

18To be more precise, these references describe a hypermultiplet as consisting of two fermionic half–hypermultiplets,

while in our case they naturally appear in SU(2)A doublets, at the cost of losing manifest SO(8) invariance.

18

QX = ψAQAX = ψA(ηAX + ψaqaAX + ψ1ψ2η̃AX).
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The super-orientifold action extends naturally both to these
and the f − f strings. It imposes the reality condition

This is precisely matches the form obtained for the antisym-
metric hypermultiplet.
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subsector of 8d Yang–Mills. A preliminary remark in this direction is that a natural definition

of selfduality for 8d Yang–Mills [98] also seems to require the same breaking of (Lorentz) SO(8)

to Sp(2) × Sp(1) that we observe on the twistor side. Although it would be very interesting to

understand this connection better, we will from now on focus on the standard four–dimensional

Penrose transform that connects the spectrum and field equations of the Dc brane worldvolume

theory to those of a suitable generalisation of 4d selfdual Yang–Mills.21

3.5 The Final Twistor Action

In the last two sections we defined a B–model setup with certain numbers of branes that reproduced

the spectrum of the Nf = 4 theory. The resulting superfields can be naturally embedded into the

holomorphic Chern-Simons action in the following way22

S =
1

2

∫

Dc

Ω ∧
(

Tr[Â · ∂̄Â +
2

3
Â ∧ Â ∧ Â] + QX · ∂̄QX + QX ∧ Â ∧QX

)

=
1

2

∫

Dc

Ω ∧
(

Tr[V · ∂̄V +
2

3
V ∧ V ∧ V + Z · ∂̄Z + 2Z ∧ V ∧ Z]

+ QX · ∂̄QX + QX ∧ V ∧QX

)

. (3.23)

The classical equations of motion can then be easily found to be

∂̄V + V ∧ V + Z ∧ Z +
1

2
QX ∧QX = 0

∂̄Z + [V,Z] = 0

∂̄QX + V ∧QX = 0 (3.24)

and by linearising these around the trivial solutions V = 0, Z = 0, Q = 0 one obtains

∂̄V = ∂̄Z = ∂̄Q = 0 . (3.25)

In addition, (3.23) has the following three gauge invariances, related to three different (0, 0)-form

gauge parameters εi
j , εi

j and ei
X

(a) δV = ∂̄ε + [V, ε] , δZ = [Z, ε] , δQX
i = QX

jε
j
i , δQi

X = −εi
jQ

j
X , (3.26)

(b) δZ = ∂̄ε + [V, ε] , δV = [Z, ε] , (3.27)

21In doing this we will assume that the Penrose transform can be applied just to the Dc brane theory, comprising

the c−c strings plus their interactions with the c−f and f −c strings, ignoring interactions with the Df worldvolume

theory. In the physical string setting such interactions are frozen at low energies essentially due to the difference in

spatial extent of the D3 and D7–branes. It would be interesting to identify a mechanism providing such a decoupling

in our topological string setting.
22Here we write the fundamental part of the action by analogy with that for the antisymmetric fields. However,

note the different relative coefficient of the interaction terms, which is due to their different Sp(N) transformation

properties.
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while in component form

and

(c) δQi
X = ∂̄ei

X + V i
je

j
X , δQX

i = ∂̄eX
i − eX

jV
j
i , δV i

j =
1

2
(Qi

XeX
j − ei

XQX
j) . (3.28)

The first of these is the ordinary gauge invariance while the other two are clearly very unusual,

and are due to the fact that on the twistor side Z and Q are (0,1) forms.23 Essentially the same

transformations have been discussed in [37], where they arise as symmetries of the (non-cubic)

twistor space effective action which, in the formalism there, would correspond to full (non-selfdual)

N = 2 SYM with matter.

As such, the linearised equations of motion and these symmetries are enough to put the su-

perfields V,Z and Q in the appropriate cohomology classes for their component fields to map to

spacetime states. In particular, the components of Q then map to Minkowski space fields of helicity

(1
2 , 0,−1

2 ) via the Penrose transform

Q = (0, ηAX , qaAX , η̃AX , 0)
︸ ︷︷ ︸

1–forms of S-charge (−k) in twistor space

Penrose←→ (0, ηAX , qaAX , η̄AX , 0)
︸ ︷︷ ︸

fields of helicity (1 − k/2) in Mink. space

.

We have thus obtained the complete spectrum of the Nf = 4 theory from twistor string theory.

Expanding (3.23) in components and integrating out the fermionic variables gives

ShCS =

∫

CP3
Ω′ ∧

(

Tr[G ∧ F + φ† ∧ D̄φ − λ̃a ∧ D̄λa + λa ∧ λa ∧ φ† ]

+ Tr[−1

2
zaA ∧ D̄zaA − ζ̃A ∧ D̄ζA − zaA ∧ λa ∧ ζA + ζA ∧ ζA ∧ φ]

+η̃AX ∧ D̄ηAX − 1

2
qaAX ∧ D̄qaAX − qaAX ∧ λa ∧ ηAX +

1

2
ηAX ∧ φ ∧ ηAX

)

,

(3.29)

where the covariant derivatives are defined as D̄ = ∂̄ + [A, ] for tensor fields and D̄ = ∂̄ + A∧ for

fundamental ones. This looks very much like the selfdual truncation of the Nf = 4 theory that we

obtained in (2.13), which we present again to facilitate the comparison

S4d =

∫

d4x Tr

[

−1

2
GF + Dφ†Dφ + iλ̄a %Dλa − λaλaφ

†

]

− Tr

[
1

2
DzaADzaA + iζ̄A %DζA + zaA[λa, ζA] + ζAζAφ

]

−
(

1

2
DqaA′XDqaA′X + iη̄A′X %DηA′X + qaA′XλaηA′X +

1

2
ηA′XφηA′X

)

.

As we have already mentioned, there should exist a nonlinear generalisation of the Penrose transform

in the spirit of [85], relating these two actions exactly. Moreover, note that by comparing the two

we readily observe that even though there is both an SU(2)A and an SU(2)A′ symmetry for the

gauge theory, we only see a single SU(2)A on the B–model side. This is a hint that these two

23In fact (a) and (b) can be straightforwardly derived from the transformation of Â (δÂ = ∂̄E+[Â, E]), by splitting

Â = V + Z and E = ε + ε into symmetric and antisymmetric parts and considering the symmetry properties of the

resulting terms.

21

By choosing to introduce 2 pairs of Df and mirror-Dfs, X
is an index of Sp(2). This is associated with the maximal
embedding Sp(2)× SU(2) ⊂ SO(8). We can then append the
hCS action
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Wavefunctions: −→ −[12]〈34〉

This time we obtain

(b) = 2ig2εabε
AB 〈34〉

〈12〉
. (19)

Note here that I have made a choice of sign where the Sp(2) index is concerned. When we compare with
the twistor side there are some factors of Ω missing, which could introduce an overall sign. I take all these
indices to be down with the following convention: I replace the relevant Ω with a plus if the indices follow the
amplitude ordering and with a minus if they don’t. That is, I’m considering the Sp(N) and Sp(2) stripped
partial amplitudes.

The results match with the same normalisation number of 32i. This puts a spanner in the works, since the
fundamental fields seem to be behaving in exactly the same way as the antisymmetric guys. If I understand
things properly at the moment, this should not be that surprising: The partial amplitudes are not aware of
the way that the fields transform because the gauge indices have been stripped down. Therefore they should
only be sensitive to helicity and should be treating both kinds of matter fields in a similar manner. This is
what we are seeing both from the Feynman rules and from the resulting amplitude calculations. So I believe
that in the following we can extrapolate amplitudes that have been calculated for say η’s also to ζ’s and the
same for z’s and q’s.

Let me close with a list of the amplitudes that seem to work along with what they should be giving. I
am displaying the twistor answer but I have also explicitly checked and matched the gauge theory answer.
The relevant normalisation factor is 32i for all listed results.

〈λa, φ†, λ̄b, φ〉 =
g2

16
εab

〈23〉
〈12〉

(20)

〈λa, ζA, ζ̄B, λ̄b〉 =
g2

16
εabε

AB

(

〈34〉2

〈23〉〈14〉
+

〈34〉
〈12〉

)

(21)

〈ηA, λa, ηB, λb〉 = 0 (22)

〈za
A, zb

B, zc
C , zd

D〉 =
g2

16

(

−
〈12〉〈34〉
〈23〉〈14〉

εadεbcε
ADεBC −

〈14〉〈23〉
〈12〉〈34〉

εabεcdε
ABεCD (23)

+εabεcdε
ADεBC + εadεbcε

ABεCD
)

〈φ†, za
A, zb

B, φ〉 =
g2

16

〈13〉〈24〉
〈23〉〈14〉

εadε
AB (24)

〈φ†, qa
A, qb

B, φ〉 =
g2

16

〈13〉〈24〉
〈23〉〈14〉

εadε
AB (25)

〈za
A, ζC , ζ̄D, zb

B〉 = −
g2

16
εab

(

εABεCD 〈13〉〈34〉
〈23〉〈14〉

+ εACεBD 〈13〉
〈12〉

)

(26)

〈qa
A, qb

B, qc
C , qd

D〉 =
g2

16

(

−
〈12〉〈34〉
〈23〉〈14〉

εadεbcε
ADεBC −

〈14〉〈23〉
〈12〉〈34〉

εabεcdε
ABεCD (27)

+εabεcdε
ADεBC + εadεbcε

ABεCD
)

〈λa, λb, ζA, ζB〉 = 0 . (28)
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I have also calculated the following 5-point amplitudes, with and without external fundamental particles

〈λa, zb
B, zc

C , λd, φ†〉 =
g2

16
εBC

(

〈25〉〈35〉
〈23〉〈45〉〈15〉

εadεbc −
〈25〉〈35〉〈14〉

〈12〉〈34〉〈45〉〈15〉
εabεcd

)

(29)

〈φ, qa
A, qb

B , ηC , ηD〉 = −
g2

16
εab

(

〈13〉
〈34〉〈15〉

εADεBC −
〈13〉〈25〉

〈23〉〈45〉〈15〉
εABεCD

)

. (30)

The relevant normalisation factor is once again 32i. I think the above give some solid evidence that what
we are doing is actually correct. Let me just add that in the derivation of the above from the twistor side
the following expressions, once derived, make calculations faster

∫

d4θ ψa
i ψ1

j ψ2
j ψb

k =
1

4
εab〈ij〉〈jk〉 (31)

∫

d4θ ψA
i ψ3

j ψ4
j ψB

k =
1

4
εAB〈ij〉〈jk〉 (32)

∫

d4θ ψa
i ψb

jψ
c
kψd

l =
1

4

(

εadεbc〈ij〉〈kl〉 − εabεcd〈il〉〈jk〉
)

(33)
∫

d4θ ψA
i ψB

j ψC
k ψD

l =
1

4

(

εADεBC〈ij〉〈kl〉 − εABεCD〈il〉〈jk〉
)

. (34)

The following ε-tensor identity is also very useful, especially in the calculation of the quartic vertices
∫

d4θ ψa
i ψb

jψ
c
kψd

l = −
∫

d4θ ψa
i ψc

kψb
jψ

d
l (35)

⇒
1

4

(

εadεbc〈ij〉〈kl〉 − εabεcd〈il〉〈jk〉
)

= −
1

4

(

εadεcb〈ik〉〈jl〉 − εacεbd〈il〉〈kj〉
)

⇒ εadεbc (〈ij〉〈kl〉 − 〈ik〉〈jl〉) − εabεcd〈il〉〈jk〉 = εacεbd〈il〉〈kj〉
⇒ −(εadεbc + εabεcd)〈il〉〈jk〉 = εacεbd〈il〉〈kj〉

⇒ εadεbc + εabεcd = εacεbd . (36)

Same holds with capitals. OK, please tell me if I’ve missed out on anything. I think that we are finally done
with this calculational part and I really hope that there will be no more surprises!
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We therefore recover the twistor result

(a) + (b) = −2ig2 〈12〉〈34〉
〈14〉〈23〉

(15)

up to a normalisation factor of 32i. In the above I have made use of the Schouten identity and
momentum conservation, in order to get the momentum structure that matches the twistor side.

The amplitude 〈ηA, λa, λ̄b, η̄B〉

This next amplitude includes some fundamental fields (fermions) and it actually ends up working in exactly
the same way as the previous one, i.e. it agrees with the twistor answer up to a normalisation factor of 32i.

1. Twistor space: We have

w1(ηA) = ψA
1 , w2(λ

a) = εdaψd
2

w3(λ̃
b) = εcbψ

3
3ψ

4
3ψ

c
3 , w4(η̃B) = ψB

4 ψ1
4ψ2

4 . (16)

The result is

g2εcbεda

∫

d8θ
ψA

1 ψd
2ψ3

3ψ
4
3ψ

c
3ψ

B
4 ψ1

4ψ
2
4

〈12〉〈23〉〈34〉〈41〉
=

g2

16
εabε

AB

(

〈34〉
〈12〉

−
〈34〉2

〈23〉〈14〉

)

. (17)

2. Spacetime: Once again we have two channels

ηA,1

λa,2 λ̄b,3

η̄B,4

Aµ

Aν

+

qc
C qd

D

ηA,1

λa,2 λ̄b,3

η̄B ,4

(a) For the t-channel we have:

Vertices:

Aµ

η̄B,4 ηA,1

−→ −iεABσµ

Aν

λa,2 λ̄b,3

−→ iεabσ̄
ν

5

• Vectors:

p

Aµ Aν −→ −ig2 ηµν

p2

where this form of the vector propagator is going to prove much more useful than the spinor helicity
one in explicit calculations.

Vertices: All the vertices can be read-off from the action by being a bit careful about all the possible
permutations between external fields that appear in more than one leg. The only thing left to do after
that is to put an extra factor of i. The discussion from the opening paragraph regarding the understanding
of the colour stripped terms is most relevant here. For the derivative couplings I am using ∂µ → −ipµ,
when the momentum is heading out of the vertex (which is pretty much always in our case). I am just
giving you the über-bitch quartic vertices here. The cubic ones will appear in the explicit examples below.

Quartics:

(qa
A, za

A)

(qb
B, zb

B)

φ

φ†

−→ ig2εabε
AB

(qa
A, za

A)

(qb
B, zb

B)

(qd
D, zd

D)

(qc
C , zc

C)

−→ i
(

2εabεcdε
ADεBC + εadεbcε

ADεBC

+2εadεbcε
ABεCD + εabεcdε

ABεCD
)

A few examples of amplitudes

Here I will write down a couple of amplitudes quite explicitly. I will first display the twistor part, which
should at least give the momentum structure consistently. In the spacetime case I will be very explicit about
what comes from where.

The amplitude 〈φ1, φ2, φ
†
3, φ

†
4〉

This is an important amplitude in checking the consistency of our conventions, because of the very simple
structure that comes out from the twistor side.

1. Twistor space: The relevant wavefunctions can always be read-off from eq.(15) and (16) of CC-020507
and are

w1(φ) = ψ1
1ψ

2
1 , w2(φ) = ψ1

2ψ
2
2

w3(φ
†) = ψ3

3ψ
4
3 , w4(φ

†) = ψ3
4ψ4

4 . (12)

The integral we have to perform will then be

g2

∫

d8θ
ψ1

1ψ
2
1ψ1

2ψ
2
2ψ

3
3ψ

4
3ψ3

4ψ
4
4

〈12〉〈23〉〈34〉〈41〉
= −

g2

16

〈12〉〈34〉
〈23〉〈14〉

. (13)

3

We find agreement for a large set of amplitudes up to the
same constant normalisation factor:

These include 4-point amplitudes with fundamental, anti-
symmetric and adjoint external particles and two 5-point.

We have recovered the spectrum. To compare interactions
derive Feynman rules for gauge theory and calculate MHV
amplitude ratios with the ones evaluated from Witten’s pre-
scription on the twistor side.
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NB1: On the twistor side we have encoded part of the flavour
symmetry geometrically. Amplitude agreement forces iden-
tification SU(2) ⊂ SO(8) with SU(2)A. Twistor string de-
scribes N = 2 theory with global SU(2)A × Sp(2).

NB2: A priori nothing is fixing the number of Df–branes. It
would be intriguing if there existed a topological analogue of
the RR cancellation condition precisely requiring the intro-
duction of 4 Dfs.

NB3: We have used Sp(Nc) group properties while construct-
ing the gauge theory and twistor actions but the amplitudes
are colour-stripped. One can straightforwardly obtain similar
results for the N = 2 theory with gauge group SU(Nc) and
Nf = 2Nc.



Conclusions
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 This required the introduction of flavour-branes in the B-
model on |||CP3|4.

 We provided a prescription for the fermionic analogue of di-
mensional reduction for topological branes on sub-supermani-
folds.

 We established a tree–level correspondence between N = 2
gauge theories with fundamental matter and twistor string
theory.



... and Outlook

20

This could allow the study of branes separating in the fermionic
directions and exploration of Coulomb and Higgs branches.
   

   This would in turn take us away from |||CP3 and towards quan-
tum twistor string?

   It would be interesting to obtain these objects through an
analysis of boundary conditions in the B–model.


