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e Black hole thermodynamics as a theoretical laboratory
for testing issues of quantum gravity arising from string
theory. Major progress towards a microscopic statisti-
cal understanding for extremal and near extremal black
holes.

e [Eixtremal BPS black holes. D-brane bound states.
Attractor mechanism. Special Geometry. Entropy func-
tion and extremization. Higher derivative contributions.
Wald formula. Extremal non-BPS black holes. Gauge
gravity correspondence.



e Central role of attractor mechanism to ensure validity
of a microscopic statistical basis.

e Understand attractor mechanism and the attractor
fixed point in relation to certain intrinsic geometrical
structure of thermodynamics. Speculative and ”exper-
imental”. Motivation from relation with scalar moduli
spaces of sugra compactifications. ” Thermodynamics” of
extremal black holes.



Thermodynamic Geometry

e Space of equilibrium thermodynamic macrostates. Max-
ima of the entropy S = S(z') of extensive variables z' in
the entropy representation or minima of M = M (/z") in
the energy representation.

e A Riemannian metric in the state space is provided
by the Hessian of internal energy h;; = 0,0, M over the
extensive variables. Weinhold Geometry:.



e In the entropy representation a Riemannian structure
given by the Hessian of the entropy as ¢;; = 0;0;S. Rup-
peiner Geometry. Physical significance related to thermo-
dynamic fluctuations connecting the equilibrium states.

e Probability of fluctuation connecting two states in-
versely proportional to line element ds? and given as
P(z') = Aexp(—1/2g;;dx'dx’) in the Gaussian approx-
imation.

e For two variables the scalar curvature related to in-
teractions in the system and proportional to correlation
volume R ~ &% and d is the physical dimension of the
system. At critical points of phase transition R diverges.



e Legendre transforms correspond to general coordinate
transformations in the thermodynamic state space. Mul-
tiple variables define covariant thermodynamic fluctua-
tion theory and | R |~ V signifies minimum real space
volume beyond which CFT breaks down. Same as the
correlation volume near critical points.

e Ruppeiner and Weinhold metrics are conformaly re-
lated hijdx/idx’j = Tg;;dx'dx’ with temperature T’ as
the conformal factor. Inverse Weinhold metric given by
the Hessian of the Gibbs potential and that of Ruppeiner
by the Hessian of Legendre transform of the entropy S.



Thermodynamic Geometry of Black Holes

e Geometric approach first applied by Ferrara, Gibbons
and Kallosh to the thermodynamics of extremal charged
black holes in N = 2 D = 4 sugra coupled to vector
multiplets. These involve gauge fields and complex scalar
moduli ¢.

e Solutions characterized by electric and magnetic charges
¢’ and p’. BPS solitons interpolating between asymp-
toticaly flat and near horizon geometries AdS? x SP~2.
ADM mass M (p,q, ) =| Z | where Z is the SUSY

central charge and ¢> are moduli values at infinity:.



e Radial variation of the moduli show attractor be-
haviour with a fixed point at the horizon where the mod-
uli are determined in terms of the charges by the sta-
bility (attractor) equations. The macroscopic entropy
Smacro =T | iz |.

e May be recast in terms of a effective potential
V(p,q,¢>*) = M?* and the entropy S = 7V (p,q, dfir)
at the attractor fixed point. Equivalence to Sen entropy
function Mahapatra, Astefanesi.

® ¢y, are determined from the critical points of V' such

that % = (. Each critical point is associated with a

Bertotti-Robinson vaccuum with AdSs x SP~2 geometry.



e Extremal black holes are trajectories in the scalar mod-
uli spaceM, describing flow from ¢, to @ fix at the
horizon.

e The Hessian of the ADM mass or V' w.r.t the rescaled
scalar moduli z, z is proportional to the moduli space
metric with the BPS mass as the constant of proportion-
ality Ferrara, Gibbons, Kallosh

azlaszQ?) q, <, 2) — 1/2Gz§<20r7 ZCT)MQ?) Q) :
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e This is a reduced Weinhold geometry and captures
the moduli space geometry at the attractor fixed point.
Away from the fixed point ?

e Augment thermodynamic configuration space with the
scalar moduli also as extensive variables and correspond-
ing chemical potentials as —»J, the scalar charges Fer-
rara, Gibbons, Kallosh and Kol.

dM = Tds + *dq, + xpdp® — SedoC.
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e (Consider thermodynamic geometries of this extended
state space in terms of the covariant Hessians w.r.t the
scalar moduli of appropriate thermodynamic potentials.
Well defined as a geometrical object even if conventional
thermodynamics breaks down at extremality:.

e Scalar curvature should provide information about
the moduli space and its divergences may describe phase
transitions amongst distinct vaccua in moduli space or
trace singularities of the moduli space.
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e State space of extremal black holes as reduced space
comprising of states respecting extremality (BPS) condi-
tion. The moduli variables lose all thermodynamic signif-
icance at this point and defines a geometry fixed in terms
of the charges.

e [First step to examine thermodynamic geometries at
the attractor fixed point for extremal black holes with
the macrostates as maxima of S = S(p, q).
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e The Hessian of the entropy g;; = 0;0;5(p.q)( or any
other suitable potentials) w.r.t to the conserved charges
(or other extensive variables) should give provide a non
degenerate thermodynamic metric.

e Microscopicaly extremal black holes describe degen-
erate ground state of a quantum system. Gauge gravity
correspondence seemingly indicates a limiting (zero tem-
perature) version of conventional thermodynamics Pedro
Silva, De Boer, Hanany, Minwalla
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e Thermodynamic geometry of extremal black holes as a
geometrical description of such a possible (zero tempera-
ture) limiting thermodynamic chracterization.

e Divergences in scalar curvature ? (Zero temperature)
phase transitions 7 Geometric issues may also be relevant
to boundary gauge theories especialy the quiver gauge
theories which have limited countable set of states.

15



Electricaly charged Black Holes.

e Black holes in D=5 N=2 sugra with 3 electric charges
q1, @2, g3. Moduli space with special geometry and
Simacro =| Z ]3/ 2— 21\ /q1q2q5. State space is 3-dimensional.

e The Hessian 0,0;5(p, q) is negative definite ensuring
stability of the canonical ensemble and a positive definite

non singular Ruppeiner metric. Scalar Curvature R =
3

AT \/01G2q3
and underlying interacting system.

is regular everywhere and non zero which signify
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e 4 charged extremal (BPS) black holes in D=4 with 4
electric charges and a four dimensional thermodynamic
state space. Entropy S again proportional to the square
root of the product of the charges.

e Thermodynamic metric is unchanged and the scalar
curvature R of the state space retains the same form
modulo a factor of half and is regular everywhere.
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D1-D5-P System.

e [IB Sugra in D=10. N; D-1 branes, N5 D-5 branes and
p units of of KK momentum along a compact direction.
The charges (1, @5, @, related to Ny, N5, N,. D=10 ex-

tremal black hole but with a near horizon geometry of
M5 x S3 x T* where Mj is a boosted AdSs.

e [intropy at the two derivative level computed through
the entropy function is S' = 2m/N1 N5 N,. The Hessian of

S provides the positive definite Ruppeiner metric. Stae

: 3
space scalar curvature is R = ——==—— and regular
p 47y /N1 N5N, &

everywhere.
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e Higher derivative R* corections may be incorporated
through the entropy function and the corrected entropy

is S = 2m NI N N, [1 + 5]

e The Ruppeiner metric is modified and leads to a com-
plicated scalar curvature R involving a cubic equation in
the denominator and diverges at the roots. Significance
of divergences in R 7
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e The D=10 sugra solution may be compactified to D=5
on ST x T* to the standard D — 1, D — 5, P extremal
black hole. At the two derivative level the entropy S
is identical to the D=10 case and the thermodynamic
geometry is unchanged.
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Small Black Holes

e Asan example we may consider 2-charge extremal BPS
black holes in ITA compactified on K3 x T? with a single
clectric charge ¢y and a magnetic charge p'.

e General expression for the entropy is S = 2m/| qo |
where ¢;, = C4BCppPp© + co Ap? and the second term
involves the higher derivative contribution.
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e For small black hole Cypc = 0 and e A = 24p' for
K3. So the entropy is zero at the two derivative level and
arises purely from the higher derivative contributions as

S =4 /| qop* |.

e The thermodynamic metric given by the Hessian of
S = S(p, q) w.r.t the charges. The scalar curvature of the
state space is R = —%( (qp7;3 72) regular everywhere. Note

that the curvature is small in the limit of large charges.
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e A microscopic description of the small black hole in-
volves Heterotic compactification on 7° and described
by electricaly charged heterotic state with charge gy = n
and p' = w where n, w are KK momentum and winding
respectively.

e The entropy from microscopic state counting in the
large charge limit is S = 4m/|nw | — Zin | nw |
+O(\/%—w) involving a correction to the macroscopic en-
rOpy Smacro-
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e The correction term requires introduction of non holo-
morphic termsin the prepotential and leads to the macro-
scopic entropy S = 4m/| qp | — 12In | nw | —I—O(\/%).
This shows a mismatch. Grand canonical ensemble Sen
in the heterotic description.

e The thermodynamic metric for the state space com-

puted both for the microscopic and macroscopic entropy.
x AT 2T
(qp)*/? (8W\/@—27)

For the former the scalar curvature is B = —

and diverges at \/qp = g—;. Significance 7
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e For the state space based on the macroscopic entropy
corrected by non holomorphic contribution we have the
scalar curvature R = ——Z (2220 which diverges at

2(qp)3/2 \m/ap—3
V=

e It is possible to include other o corrections to the
microscopic entropy involving the state counting from
topological string and the OSV formula. The corrected

entropy reads S = 4| nw | — Zin | nw | +2In2 —
675

m_‘_ .........
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e 'The scalar curvature R based on the state space given
by the corrected entropy has a complicated form and
again involves a cubic equation in y/nw in the denom-
inator and hence diverges at the roots.

e HFurther corrections to the entropy of 2 charge small
black holes arise from string loop corrections Sinha, Surya-
narayana and the modified entropy has the form S =

vanw + bn with n >> w >> 1 and a is an arbitrary
constant and b depends on the loop corrections.
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e Curiously Kallosh and Linde also conjectures a sim-
milar form for the entropy of two charged small black
holes based on quantum information theory as

S = \/anw +b(n + w).

e The thermodynamic scalar curvature on the state space
based on this conjectured entropy from QIF is regular
everywhere.
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Summary

e Geometric description of thermodynamic systems through
Riemannian geometry of the state space. Application to
extremal black holes in string theory:.

e For extremal black holes in N=2 D=4 SUGRA, re-
duced thermodynamic geometries capture moduli space
geometry at the attractor fixed points. Phase transitions
in moduli space 7
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e Significance of scalar moduli as extensive thermody-
namic variables. Thermodynamic significance away from
the attractor fixed points.

e (Zero temperature) thermodynamic description of ex-
tremal black holes. Thermodynamic geometry of the
state space of extremal black holes as a possible example
of such limiting geometries for limiting thermodynamics.
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e [xamples of 3 charged extremal black holes, D1-D5,P
systems and Small Black Holes. Non degenerate state
space geometries. Divergences of scalar curvature. Sig-
nificance 7

e Relation to extremal black holes described by Gauge-
gravity correspondence. Thermodynamic geometry of
boundary quiver gauge theories 7
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