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• Black hole thermodynamics as a theoretical laboratory

for testing issues of quantum gravity arising from string

theory. Major progress towards a microscopic statisti-

cal understanding for extremal and near extremal black

holes.

• Extremal BPS black holes. D-brane bound states.

Attractor mechanism. Special Geometry. Entropy func-

tion and extremization. Higher derivative contributions.

Wald formula. Extremal non-BPS black holes. Gauge

gravity correspondence.
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• Central role of attractor mechanism to ensure validity

of a microscopic statistical basis.

• Understand attractor mechanism and the attractor

fixed point in relation to certain intrinsic geometrical

structure of thermodynamics. Speculative and ”exper-

imental”. Motivation from relation with scalar moduli

spaces of sugra compactifications. ”Thermodynamics” of

extremal black holes.

4



Thermodynamic Geometry

• Space of equilibrium thermodynamic macrostates. Max-

ima of the entropy S = S(xi) of extensive variables xi in

the entropy representation or minima of M = M(′xi) in

the energy representation.

• A Riemannian metric in the state space is provided

by the Hessian of internal energy hij = ∂i∂jM over the

extensive variables. Weinhold Geometry.
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• In the entropy representation a Riemannian structure

given by the Hessian of the entropy as gij = ∂i∂jS. Rup-

peiner Geometry. Physical significance related to thermo-

dynamic fluctuations connecting the equilibrium states.

• Probability of fluctuation connecting two states in-

versely proportional to line element ds2 and given as

P (xi) = Aexp(−1/2gijdx
idxj) in the Gaussian approx-

imation.

• For two variables the scalar curvature related to in-

teractions in the system and proportional to correlation

volume R ∼ ξd and d is the physical dimension of the

system. At critical points of phase transition R diverges.
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• Legendre transforms correspond to general coordinate

transformations in the thermodynamic state space. Mul-

tiple variables define covariant thermodynamic fluctua-

tion theory and | R |∼ V signifies minimum real space

volume beyond which CFT breaks down. Same as the

correlation volume near critical points.

• Ruppeiner and Weinhold metrics are conformaly re-

lated hijdx
′idx

′j = Tgijdx
idxj with temperature T as

the conformal factor. Inverse Weinhold metric given by

the Hessian of the Gibbs potential and that of Ruppeiner

by the Hessian of Legendre transform of the entropy S.
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Thermodynamic Geometry of Black Holes

• Geometric approach first applied by Ferrara, Gibbons

and Kallosh to the thermodynamics of extremal charged

black holes in N = 2 D = 4 sugra coupled to vector

multiplets. These involve gauge fields and complex scalar

moduli φ.

• Solutions characterized by electric and magnetic charges

qI and pJ . BPS solitons interpolating between asymp-

toticaly flat and near horizon geometries AdS2 × SD−2.

ADM mass M(p, q, φ∞) =| Z∞ | where Z is the SUSY

central charge and φ∞ are moduli values at infinity.
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• Radial variation of the moduli show attractor be-

haviour with a fixed point at the horizon where the mod-

uli are determined in terms of the charges by the sta-

bility (attractor) equations. The macroscopic entropy

Smacro = π | Zfix |.

• May be recast in terms of a effective potential

V (p, q, φ∞) = M 2 and the entropy S = πV (p, q, φfix)

at the attractor fixed point. Equivalence to Sen entropy

function Mahapatra, Astefanesi.

• φfix are determined from the critical points of V such

that ∂V
∂φ = 0. Each critical point is associated with a

Bertotti-Robinson vaccuum with AdS2×SD−2 geometry.
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• Extremal black holes are trajectories in the scalar mod-

uli spaceMφ describing flow from φ∞ to φfix at the

horizon.

• The Hessian of the ADM mass or V w.r.t the rescaled

scalar moduli z, z̄ is proportional to the moduli space

metric with the BPS mass as the constant of proportion-

ality Ferrara, Gibbons, Kallosh

∂zi∂zjM(p, q, z, z̄) = 1/2Gij̄(zcr, z̄cr)M(p, q) .
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• This is a reduced Weinhold geometry and captures

the moduli space geometry at the attractor fixed point.

Away from the fixed point ?

• Augment thermodynamic configuration space with the

scalar moduli also as extensive variables and correspond-

ing chemical potentials as −Σ, the scalar charges Fer-

rara, Gibbons, Kallosh and Kol.

dM = Tds + ψadqa + χbdp
b − Σcdφ

c
∞.
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• Consider thermodynamic geometries of this extended

state space in terms of the covariant Hessians w.r.t the

scalar moduli of appropriate thermodynamic potentials.

Well defined as a geometrical object even if conventional

thermodynamics breaks down at extremality.

• Scalar curvature should provide information about

the moduli space and its divergences may describe phase

transitions amongst distinct vaccua in moduli space or

trace singularities of the moduli space.
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• State space of extremal black holes as reduced space

comprising of states respecting extremality (BPS) condi-

tion. The moduli variables lose all thermodynamic signif-

icance at this point and defines a geometry fixed in terms

of the charges.

• First step to examine thermodynamic geometries at

the attractor fixed point for extremal black holes with

the macrostates as maxima of S = S(p, q).
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• The Hessian of the entropy gij = ∂i∂jS(p.q)( or any

other suitable potentials) w.r.t to the conserved charges

( or other extensive variables) should give provide a non

degenerate thermodynamic metric.

• Microscopicaly extremal black holes describe degen-

erate ground state of a quantum system. Gauge gravity

correspondence seemingly indicates a limiting (zero tem-

perature) version of conventional thermodynamics Pedro

Silva, De Boer, Hanany, Minwalla

14



• Thermodynamic geometry of extremal black holes as a

geometrical description of such a possible (zero tempera-

ture) limiting thermodynamic chracterization.

• Divergences in scalar curvature ? (Zero temperature)

phase transitions ? Geometric issues may also be relevant

to boundary gauge theories especialy the quiver gauge

theories which have limited countable set of states.
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Electricaly charged Black Holes.

• Black holes in D=5 N=2 sugra with 3 electric charges

q1, q2, q3. Moduli space with special geometry and

Smacro =| z |3/2= 2π
√
q1q2q3. State space is 3-dimensional.

• The Hessian ∂i∂jS(p, q) is negative definite ensuring

stability of the canonical ensemble and a positive definite

non singular Ruppeiner metric. Scalar Curvature R =
3

4π
√
q1q2q3

is regular everywhere and non zero which signify

and underlying interacting system.
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• 4 charged extremal (BPS) black holes in D=4 with 4

electric charges and a four dimensional thermodynamic

state space. Entropy S again proportional to the square

root of the product of the charges.

• Thermodynamic metric is unchanged and the scalar

curvature R of the state space retains the same form

modulo a factor of half and is regular everywhere.
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D1-D5-P System.

• IIB Sugra in D=10. N1 D-1 branes, N5 D-5 branes and

p units of of KK momentum along a compact direction.

The charges Q1, Q5, Qp related to N1, N5, Np. D=10 ex-

tremal black hole but with a near horizon geometry of

M3 × S3 × T 4 where M3 is a boosted AdS3.

• Entropy at the two derivative level computed through

the entropy function is S = 2π
√

N1N5Np. The Hessian of

S provides the positive definite Ruppeiner metric. Stae

space scalar curvature is R = 3

4π
√
N1N5Np

and regular

everywhere.
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• Higher derivative R4 corections may be incorporated

through the entropy function and the corrected entropy

is S = 2π
√

N1N5Np[1 + γ
N1N5

3/2].

• The Ruppeiner metric is modified and leads to a com-

plicated scalar curvature R involving a cubic equation in

the denominator and diverges at the roots. Significance

of divergences in R ?
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• The D=10 sugra solution may be compactified to D=5

on S1 × T 4 to the standard D − 1, D − 5, P extremal

black hole. At the two derivative level the entropy S

is identical to the D=10 case and the thermodynamic

geometry is unchanged.
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Small Black Holes

• As an example we may consider 2-charge extremal BPS

black holes in IIA compactified on K3 ×T 2 with a single

electric charge q0 and a magnetic charge p1.

• General expression for the entropy is S = 2π
√

| q0 | cL6
where cL = CABCp

ApBpC +c2Ap
A and the second term

involves the higher derivative contribution.
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• For small black hole CABC = 0 and c2A = 24p1 for

K3. So the entropy is zero at the two derivative level and

arises purely from the higher derivative contributions as

S = 4π
√

| q0p1 |.

• The thermodynamic metric given by the Hessian of

S = S(p, q) w.r.t the charges. The scalar curvature of the

state space is R = −11
8
( π
(qp)3/2

) regular everywhere. Note

that the curvature is small in the limit of large charges.
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• A microscopic description of the small black hole in-

volves Heterotic compactification on T 6 and described

by electricaly charged heterotic state with charge q0 = n

and p1 = w where n,w are KK momentum and winding

respectively.

• The entropy from microscopic state counting in the

large charge limit is S = 4π
√

| nw | − 27
4
ln | nw |

+O( 1√
nw

) involving a correction to the macroscopic en-

ropy Smacro.
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• The correction term requires introduction of non holo-

morphic terms in the prepotential and leads to the macro-

scopic entropy S = 4π
√

| qp | − 12ln | nw | +O( 1√
qp

).

This shows a mismatch. Grand canonical ensemble Sen

in the heterotic description.

• The thermodynamic metric for the state space com-

puted both for the microscopic and macroscopic entropy.

For the former the scalar curvature isR = − π
(qp)3/2

(
4π

√
qp−27

8π
√
qp−27)

and diverges at
√
qp = 27

8π . Significance ?
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• For the state space based on the macroscopic entropy

corrected by non holomorphic contribution we have the

scalar curvature R = − π
2(qp)3/2

(
π
√
qp−6

π
√
qp−3

) which diverges at
√
qp = 3

π .

• It is possible to include other α
′

corrections to the

microscopic entropy involving the state counting from

topological string and the OSV formula. The corrected

entropy reads S = 4π
√

| nw | − 27
4
ln | nw | +15

2
ln2 −

675

32π
√

|nw|
+ .........
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• The scalar curvature R based on the state space given

by the corrected entropy has a complicated form and

again involves a cubic equation in
√
nw in the denom-

inator and hence diverges at the roots.

• Further corrections to the entropy of 2 charge small

black holes arise from string loop corrections Sinha, Surya-

narayana and the modified entropy has the form S =√
anw + bn with n >> w >> 1 and a is an arbitrary

constant and b depends on the loop corrections.
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• Curiously Kallosh and Linde also conjectures a sim-

milar form for the entropy of two charged small black

holes based on quantum information theory as

S =
√

anw + b(n + w).

• The thermodynamic scalar curvature on the state space

based on this conjectured entropy from QIF is regular

everywhere.
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Summary

• Geometric description of thermodynamic systems through

Riemannian geometry of the state space. Application to

extremal black holes in string theory.

• For extremal black holes in N=2 D=4 SUGRA, re-

duced thermodynamic geometries capture moduli space

geometry at the attractor fixed points. Phase transitions

in moduli space ?
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• Significance of scalar moduli as extensive thermody-

namic variables. Thermodynamic significance away from

the attractor fixed points.

• (Zero temperature) thermodynamic description of ex-

tremal black holes. Thermodynamic geometry of the

state space of extremal black holes as a possible example

of such limiting geometries for limiting thermodynamics.
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• Examples of 3 charged extremal black holes, D1-D5,P

systems and Small Black Holes. Non degenerate state

space geometries. Divergences of scalar curvature. Sig-

nificance ?

• Relation to extremal black holes described by Gauge-

gravity correspondence. Thermodynamic geometry of

boundary quiver gauge theories ?
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