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From Planck to PLANCK

Planck

We have been talking about
the smallest of distance scales:

down to
`Pl = GN~

c3 ∼ 10−33 cm

Now we are going to look at the
largest scales. . . all the way
upto the entire Universe.
Size of the Universe ∼ 5× 1030 cm
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Our neighbourhood

We live in a moderate size planet of a moderate
size star at a random location in a typical galaxy
at a time when the Universe is ∼ 15 billion
(1.5× 1010) years old.

The nearest star (our star) is about 8 light-mins
away and the distance to the next nearest one is
4 light-years.
1 pc = 3.26 ly = 3.09× 1018 cm
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Our neighbourhood. . . (ii)

These two are part of over 1014 stars that make
our Milky Way galaxy.

It is a spiral galaxy that measures 105 × 104

light-years.

The next galaxy is 50kpc ' 1.7× 105 ly away.
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Cosmic hierarchy

Our Earth is part of the planetary system of the
Sun,

which is a star in the Milky Way galaxy,
which in turn belongs to the local cluster of
galaxies.
The local cluster is part of the local supercluster.
There are many superclusters spread
homegeneously as far as we can see.
Quasars are the farthest structures seen in the
Universe ∼ 12–14 Gpc away.
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Distribution of galaxies

These are all the visible matter in our Universe.

NASI Symposium on String Theory, HRI (2005) – p.7/35



Distribution of galaxies

These are all the visible matter in our Universe.
Density of matter ρmatter ∼ 10−31 gm/cm3
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Distribution of galaxies
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Homegeneous and isotropic Universe

On large scales, the Universe is (statistically)
homegeneous and isotropic.

However, it is not static.
Ours is an expanding Universe. Galaxies are
moving away from each other.
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Hubble’s observation

NASI Symposium on String Theory, HRI (2005) – p.9/35



Hubble’s observation

Hubble’s law:
The velocity of recession v of a galaxy at a
distance d is a linearly increasing function of d.

v = H0d

H0 = 72 ± 7 (km/s)/Mpc is the Hubble’s constant.
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Cosmic microwave radiation
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Cosmic microwave radiation

Penzias and Wilson observed
a very weak, but homogeneous
and isotropic microwave radia-
tion.
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Cosmic microwave radiation

Peak of spectrum in the mi-

crowave range.

Penzias and Wilson observed
a very weak, but homogeneous
and isotropic microwave radia-
tion.
It fits the spectrum of a per-
fect blackbody, of temperature
2.725± 0.01◦ K
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Cosmic microwave radiation

Peak of spectrum in the mi-

crowave range.

[animated] TV noise

Penzias and Wilson observed
a very weak, but homogeneous
and isotropic microwave radia-
tion.
It fits the spectrum of a per-
fect blackbody, of temperature
2.725± 0.01◦ K
This is easy to observe.
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Cosmic microwave radiation

Peak of spectrum in the mi-

crowave range.

Penzias and Wilson observed
a very weak, but homogeneous
and isotropic microwave radia-
tion.
It fits the spectrum of a per-
fect blackbody, of temperature
2.725± 0.01◦ K
Radiation density
ρrad ∼ 10−34g/cm3 � ρmatter
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The dark side of the Universe

darth energy

There is evidence most of the energy
in the Universe is neither in the form
of matter nor in radiation.

The largest component is missing!
The missing energy is a central prob-
lem of cosmology. It is not luminous,
so we call it dark energy . It is per-
haps ∼ 70% of the total energy.
A candidate is vacuum energy .
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FRW cosmological model

An expanding, homogeneous and isotropic
Universe is described by the
Friedman-Robertson-Walker (FRW) metric.

ds2 = −dt2 + a2(t)
(
dx2 + dy2 + dz2

)

At a fixed instant of time, the spatial distance is

a2 (tfixed)
(
dx2 + dy2 + dz2

)
≡ dX2 + dY 2 + dZ2

Spatial slices are flat 3-dimensional space.
physical distance = a(t) coordinate distance
(x, y, z) are called comoving coordinates.
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FRW cosmological model. . . (ii)

Homegeneity and isotropy restricts the

choices to three.

FRW model can also
describe Universe in
which spatial slices at
fixed time are not flat,

but curved.
Observation favours a
flat Universe — it is
also simple.
Is the expansion uni-
form, accelerated or
decelerated?
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FRW model: Consequences

If a(t) (called scale factor) is an increasing
function physical distances increase with time.

Light received by distant galaxies are redshifted
due to Doppler effect:

λ0

λe
=
a(t0)

a(te)
≡ 1 + z

z = ∆λ/λ is also a measure of distance. Quasars
have z ∼ 6.6.

NASI Symposium on String Theory, HRI (2005) – p.14/35



FRW model: Consequences

If a(t) (called scale factor) is an increasing
function physical distances increase with time.
Light received by distant galaxies are redshifted
due to Doppler effect:

λ0

λe
=
a(t0)

a(te)
≡ 1 + z

z = ∆λ/λ is also a measure of distance. Quasars
have z ∼ 6.6.

NASI Symposium on String Theory, HRI (2005) – p.14/35



FRW model: Consequences

If a(t) (called scale factor) is an increasing
function physical distances increase with time.
Light received by distant galaxies are redshifted
due to Doppler effect:

λ0

λe
=
a(t0)

a(te)
≡ 1 + z

z = ∆λ/λ is also a measure of distance. Quasars
have z ∼ 6.6.

NASI Symposium on String Theory, HRI (2005) – p.14/35



Matter in FRW model

Matter is assumed to be distributed uniformly:
homogeneous dust.

The thermal velocity of the
galaxies is much smaller than their rest energy.
Nonrelativistic pressureless gas.
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Matter in FRW model

Matter is assumed to be distributed uniformly:
homogeneous dust. The thermal velocity of the
galaxies is much smaller than their rest energy.
Nonrelativistic pressureless gas.

From the equation of state

ρm(t0) =
ρm(t)

(a(t0)/a(t))3 =
ρm(t)

(1 + z)3

Matter density is decreasing with time.
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Matter is assumed to be distributed uniformly:
homogeneous dust. The thermal velocity of the
galaxies is much smaller than their rest energy.
Nonrelativistic pressureless gas.

From the equation of state

ρm(t0) =
ρm(t)

(a(t0)/a(t))3 =
ρm(t)

(1 + z)3

Matter density is decreasing with time.

ρm(now) ∼ 10−30g/cm3 Visible matter is ∼ 10% of this.
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Radiation in FRW model

Radiation consists mainly of CMBR: photons

Also
neutrinos,. . . . Relativistic

From the equation of state

ρr(t0) =
ρr(t)

(a(t0)/a(t))4 =
ρr(t)

(1 + z)4

Radiation density is falling off faster than matter density.

ρr(now) ∼ 10−34g/cm3 < ρm(now). Matter dominates over

radiation at present.
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Radiation in FRW model. . . (ii)

But at some time in the past, when the Universe
was 1000 times smaller ρm = ρr.

Before that it
was radiation dominated.
From the blackbody spectrum of CMBR:

T (t0) =
T (t)

a(t0)/a(t)
=

T (t)

1 + z

Approximately Hubble time ago the Universe
started in a Big Bang Singularity. Temperature
and density was infinite.
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Thermal history of the Universe

The Universe cooled as it ex-
panded and the density of mat-
ter and radiation decreased.

t = 109yrs, T = 15◦K: Star and
[animated] galaxy formation begins.

t = 3× 105yrs, T = 3000◦K:
Matter radiation decoupling. Last
scattering surface — CMBR orig-
inates. Protons and electrons
combine to form Hydrogen and
Helium atoms shortly afterwards.
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Thermal history. . . (ii)

t = 102s, T = 109◦K: Matter to radiation domination.
Positrons annihilate. Helium nucleus formation begins.

t = 10−5s, T = 1012◦K: Quarks and gluons form baryons
and mesons.
t = 10−10s, T = 1015◦K: Electroweak unification,

antiquarks annihilate.
t = 10−37s, T = 1028◦K: Grand Unification era, Inflation?

t = 10−43s, T = 1031◦K: Quantum gravity era
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Thermal history. . . (iii)
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Vacuum energy in FRW model

Not much can unfortunately be said

except that
it is the largest component of energy!
Constant in space and time

ρΛ =
Λ

(8πGN/c4)

Observation favours a positive value of cosmo-
logical constant but just barely above zero.
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Vacuum energy in FRW model

Not much can unfortunately be said except that
it is the largest component of energy!
Constant in space and time

ρΛ =
Λ

(8πGN/c4)

Observation favours a positive value of cosmolog-
ical constant but just barely above zero. From
equation of state: p = −ρ: negative pressure.
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Einstein equations

Just one equation:
(
ȧ
a

)2
= 8πGN

3 ρtot Friedman
equation.

Dimensionless densities:

Ωm = ρm,0/ρcr, Ωr = ρr,0/ρcr, ΩΛ = ρv,0/ρcr

(Ωm + Ωr + ΩΛ = 1).
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a2
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equation. At present H2
0 = 8πGNρcr/3, defines

ρcr =
3H2

0

8πGN
= 10−29g/cm3

the critical density.
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Cosmology as Classical Mechanics

Friedman eqn does not fix the overall scale of a.
Set a(t0) = 1.

Using eqns of state

− 1

2

(
a2ΩΛ +

Ωm

a
+

Ωr

a2

)
≡ Veff(a)

1

2H2
0

ȧ2 + Veff(a) = 0

Energy condition for a (NR) particle in a poten-
tial.
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Evolution of scale factor

Scale factor a(t) grows as

• ∼ (t/t0)
2/3 when matter dominates;

• ∼ (t/t0)
1/2 when radiation dominates;

• ∼ eH(t−t0) when cosmological constant
dominates. de Sitter Universe.

Big Bang Singularity
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CMBR and COBE
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WMAPping CMBR
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WMAPping CMBR

Fluctuations: 1 part in 105
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WMAPping CMBR. . . (ii)

Angular correlation of tempera-
ture fluctuations in µK.

Music from the primor-
dial universe
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WMAP gives rather
tight constraints on the
cosmological parame-
ters ΩΛ,Ωm,Ωr, k, · · ·
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WMAPping CMBR. . . (ii)

Music from the primor-
dial universe
WMAP gives rather
tight constraints on the
cosmological param-
eters ΩΛ,Ωm,Ωr, k, · · ·
But . . .
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Problems with the SM

• The angular fluctuations 〈δT (θ0) δT (θ0 + θ)〉
and indeed the uniformity itself are in violation
of causality: Horizon problem

• Flatness problem

• Why is the Universe homogeneous ?

• Why is the Universe isotropic ?

• Singularity problem
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Inflation

The entire visible Universe is
actually one causal patch

be-
cause there was a period of
exponential expansion between
∼ 10−43–10−37 s During
this time the size of a causal
patch increased ∼ 1025–1030-
fold. Inflation
What drove this expansion?
A scalar field coupled to grav-
ity.
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Inflation. . . (ii)

The inflationary paradigm
solves the causality,

flatness,
homegeneity and isotropy
problems.
In addition, most models pre-
dicts a scale invariant spectrum
of quantum fluctuations which
explain structure formation.
Which model?
Is semiclassical treatment
enough?
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Role of string theory

Compactified string theory naturally has many
scalar fields: moduli.

Example: the scalar field
for the size of the compact space.
Moduli driven inflation† Need to generate
potential: Flux compactification
Tachyon field on unstable D-brane or brane-
antibrane pair. Tachyon inflation Tachyon
behaves like pressureless dust at late times.
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Hybrid inflation

A combination of moduli
and tachyon:

Hybrid Inflation.
Tachyonic instability pro-
vides an exit from the infla-
tionary phase.
Many other models. . .
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Singularity and string theory

String theory is a consistent quantum
theory of gravity and matter.

Finite extent of the string suggests
that strings may not see a singularity.
In some cases, this happens for spa-
tial singularities.
Can string theory resolve the space-
time singularity in Big Bang?
Can it explain four dimensions?
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Whether string, whither string

If string theory describes nature, the confirmation
may well come from the sky.
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Acnowledgement

Wayne Hu’s cosmology page:
background.uchicago.edu/˜whu/
NASA homepage
Cambridge Relativity Group:
www.damtp.cam.ac.uk/user/gr/public/index.html
and many others via google.
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