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Overview
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Friedman-Robertson-Walker model
Standard Model of Cosmology

Problems with the Standard Model of Cosmology
Inflationationary paradigm
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From Planck to PLANCK

We have been talking about
the smallest of distance scales:

Planck
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From Planck to PLANCK

We have been talking about
the smallest of distance scales:
down to

Now we are going to look at the
largest scales... all the way
upto the entire Universe.

PLANCK Size of the Universe ~ 5 x 10°Y cm
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We live in a moderate size planet of a moderate
size star at a random location in a typical galaxy
at a time when the Universe is ~ 15 billion

(1.5 x 10'Y) years old.

The nearest star (our star) is about 8 light-mins
away and the distance to the next nearest one is
4 light-years.

1 pc=23.26ly=3.09 x 10*® cm
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Cosmic hierarchy

Our Earth is part of the planetary system of the
Sun, which is a star in the Milky Way galaxy,
which in turn belongs to the local cluster of
galaxies.

The local cluster is part of the local supercluster.
There are many superclusters spread
homegeneously as far as we can see.

Quasars are the farthest structures seen in the
Universe away.



Distribution of galaxies

These are all the visible matter in our Universe.
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Distribution of galaxies

These are all the visible matter in our Universe.

Density of matter p,.... ~ 107%! gm/cm?
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Homegeneous and isotropic Universe

On large scales, the Universe is (statistically)
homegeneous and isotropic.
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Homegeneous and isotropic Universe

On large scales, the Universe is (statistically)
homegeneous and isotropic.
However, it is not static.

Ours is an Galaxies are
moving away from each other.



Hubble’s observation

IDhscovery oF ExrpanDing UNIVERSE

Log Velocity

Mt. Wilson
100 Inch
= Telescope
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Hubble’s observation

Hubble’s law:

The velocity of recession v of a galaxy at a
distance d is a linearly increasing function of d.

Hy, = 72 + 7 (km/s)/Mpc is the Hubble’s constant.




Cosmic microwave radiation

DiscoveEryY oF Cosmic BACKGROUND
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Cosmic microwave radiation

Penzias and Wilson observed
a very weak, but homogeneous
and isotropic microwave radia-

tion.
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Cosmic microwave radiation

‘———— Penzias and Wilson observed
Pal [\ i a very weak, but homogeneous
\ i and isotropic microwave radia-
. 1ltion.

wbo 1|t fits the spectrum of a per-
- fect blackbody, of temperature
Peak of spectrum in the 2725 + 0.0lo K

s This is easy to observe.
[animated] TV noise
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Cosmic microwave radiation

| em2sr sec cm-1

Intensity, 10-4 ergs

ool

Penzias and Wilson observed

RUM FROM COBE : a Very Weak, but homogeneous

048_- f

06

Peak of spectrum in the

range.

. and isotropic microwave radia-
: tion.

| It fits the spectrum of a per-
: fect blackbody, of temperature

2.725 £0.01° K
Radiation density

prad = 10_34Q/Cm3
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Cosmic microwave radiation

| em2sr sec cm-1

Intensity, 10-4 ergs

ool

Penzias and Wilson observed

RUM FROM COBE : a Very Weak, but homogeneous

048_- f

06

Peak of spectrum in the

range.

. and isotropic microwave radia-
: tion.

| It fits the spectrum of a per-
: fect blackbody, of temperature

2.725 £0.01° K
Radiation density

Prea ~ 1072 g/em? |
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The dark side of the Universe

There is evidence most of the energy
in the Universe is neither in the form
of matter nor in radiation.
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The dark side of the Universe

There is evidence most of the energy
in the Universe is neither in the form
of matter nor in radiation.

The largest component is missing!

The missing energy is a central prob-
lem of cosmology. It is not luminous,
so we call it . It I1s per-

haps ~ 70% of the total energy.

A candidate is .
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FRW cosmological model

An expanding, homogeneous and isotropic
Universe is described by the
Friedman-Robertson-Walker (FRW) metric.
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FRW cosmological model

An expanding, homogeneous and isotropic
Universe is described by the

ds* = —dt* + a*(t) (dz* + dy? + dz?)

At a fixed instant of time, the spatial distance is

0° (ties) (de + dy* + sz) = dX?+dY? + dZ?

Spatial slices are flat 3-dimensional space.
physical distance = a(t) coordinate distance

(x,y, z) are called
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but curved.
Observation favours a
flat Universe — it Is
also simple.
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FRW model: Consequences

If a(¢) (called scale factor) is an increasing
function physical distances increase with time.
Light received by distant galaxies are

due to Doppler effect:

& _ a(to)

=14z

Ae  alte)

IS also a measure of distance. Quasars
have z ~ 6.6.
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Matter in FRW model

Matter is assumed to be distributed uniformly:
homogeneous dust. The thermal velocity of the
galaxies is much smaller than their rest energy.

From the equation of state

Matter density is decreasing with time.

pm(now) ~ 107g/cm? Visible matter is ~ 10% of this.
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Radiation in FRW model

Radiation consists mainly of CMBR: photons
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Radiation in FRW model

Radiation consists mainly of CMBR: photons Also

WC e Relativistic
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Radiation in FRW model

Radiation consists mainly of CMBR: photons Also
neutrinos,. ...

From the equation of state

Radiation density is falling off faster than matter density.

pr(now) ~ 10~3*g/cm?
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Radiation in FRW model

Radiation consists mainly of CMBR: photons Also
neutrinos,. ...

From the equation of state

Radiation density is falling off faster than matter density.

3

pr(now) ~ 107%*g/cm® < p,,,(now).
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Radiation in FRW model

Radiation consists mainly of CMBR: photons Also
neutrinos,. ...

From the equation of state

Radiation density is falling off faster than matter density.

pr(now) ~ 10734g/em® < p,,(now). Matter dominates over

radiation at present.
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Radiation in FRW model... (i1)

But at some time in the past, when the Universe
was 1000 times smaller p,, = p,.. Before that it
was radiation dominated.

From the blackbody spectrum of CMBR:

Approximately Hubble time ago the Universe
started in a . Temperature

and density was infinite.



Thermal history of the Universe

The Universe cooled as it ex-
panded and the density of mat-
ter and radiation decreased.
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Thermal history of the Universe

The Universe cooled as it ex-
panded and the density of mat-
ter and radiation decreased.
t = 10%yrs, T = 15°K: IS EIRRE
anmated] galaxy formation begins.

t =3 x 10°yrs, T' = 3000°K: BRI
ter radiation decoupling.

PRESENT

Protons and electrons
combine to form Hydrogen and
Helium shortly afterwards.
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Thermal history... (i)

=R AR Matter to radiation domination.
Positrons annihilate.
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Thermal history... (i)

=R AR Matter to radiation domination.
Positrons annihilate.
t =107°s, T = 10'*°K:

t =107, T = 10'*°K:

t =1073"s, T = 10%°°K:

t =10"%s, T = 10%'°K:
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Particle Data Group, LBNL, © 2000, Supparted by DOE and NSF




Thermal history...
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History of the Universe

\0-3’\sec

Grand Unification Epoch

2 End of Quantum Gravity Epoch
2
s Quantyp,
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Vacuum energy in FRW model

Not much can unfortunately be said
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Vacuum energy in FRW model

Not much can unfortunately be said except that
it Is the largest component of energy!

Constant in space and time

o A
A (87G N /c*)

° ° ° ° °
NASI Symposium on String Theory, HRI (2005) — p.21/35



Vacuum energy in FRW model

Not much can unfortunately be said except that
it Is the largest component of energy!

o A
A (87G N /c*)

Observation favours a positive value of cosmolog-
ical constant but just barely above zero.



Vacuum energy in FRW model

Not much can unfortunately be said except that
it Is the largest component of energy!

o A
A (87G N /c*)

Observation favours a positive value of cosmolog-
ical constant but just barely above zero. From
equation of state: . negative pressure.



Einstein equations

Just one equation:
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Einstein equations

87TGN

Just one equation: (B " Friedman

equation. At present HS = 87TGN,OC7~/3, defines

the critical density.
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Einstein equations

Just one equation:

At present H? = 87G yp.,/3, defines

the critical density. Dimensionless densities:

Qm — pm,O/pcry Qr — /07“,0//007“7 QA — pv,O/pcr

(Qm+Qr+QA — 1)




Cosmology as Classical Mechanics

Friedman egn does not fix the overall scale of a.

st TR
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Cosmology as Classical Mechanics

Friedman egn does not fix the overall scale of a.
Set
Using egns of state

5 <CL 24 P a2> = V(a)
L2y (@) = 0
— ff a —
oz ¢V

Energy condition for a (NR) particle in a potential.
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Scale factor a(t) grows as

ST Rad Wwhen matter dominates;

when radiation dominates;

SEACRDN \when cosmological constant
dominates. Universe.






CMBR and COBE
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_ Cosmic MICROWAVE BACKGROUND SPECTRUM FROM COBE

THEORY AND OBSERVATION AGREE

:
§
]
’
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WMAPping CMBR

P ve Anisotropy
wave Anisotropy p

WA ooy
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MAPping CMBR
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WMAPping CMBR
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WMAPping CMBR... (ii)

40

r,.l....L N 2 a2 aaaqsl N i3 3 aaaal i i |
0205 10 100 1000

Angular correlation of tempera-
ture fluctuations in uK.

Music from the primor-
dial universe

WMAP gives rather
tight constraints on the
cosmological parame-
ters Qa, Q0,2 k- -
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WMAPping CMBR... (ii)

‘osmologica

arameicers

in the CMB

Baryon—Photon Ratio

Curvature

Matter—Radiation Ratio

Music from the primor-
dial universe

WMAP gives rather
tight constraints on the
cosmological parame-
ters O, Q,,, Q. k. - -

° ° ° ° ° °
NASI Symposium on String Theory, HRI (2005) — p.27/35



WMAPping CMBR... (ii)

‘osmologica

arameicers

in the CMB

Baryon—Photon Ratio

Curvature

Matter—Radiation Ratio

Music from the primor-
dial universe

WMAP gives rather
tight constraints on the
cosmological param-
eters Oy, €, Q. k. - -
But ...
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Problems with the SM

The angular fluctuations
and indeed the uniformity itself are in violation

IR INEE YA Horizon problem
Flatness problem
WA GERRIIEIEES homogeneous

Why is the Universe Fs 91 ?

Singularity problem



Inflation

The entire visible Universe Is
actually one causal patch
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During this
time the size of a causal
patch increased ~ 10%°—10%-

e1e M [Nflation
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Inflation

The entire visible Universe is
actually one causal patch be-
cause there was a period of
exponential expansion between

During this
time the size of a causal
patch increased ~ 10%°—10%-

Old inflation (o][e M |Nflation

What drove this expansion?
A scalar field coupled to grav-

ity.
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Inflation

The entire visible Universe is
actually one causal patch be-
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exponential expansion between
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The Inflationary paradigm
solves the causality, flatness,
| homegeneity and isotropy
2 problems.
In addition, most models pre-
| dicts a
i of quantum fluctuations which
! explain
&R Which model?
Is semiclassical treatment
enough?

Inflation to Structure Formation
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Role of string theory

Compactified string theory naturally has many
scalar fields: moduli. Example: the scalar field
for the of the compact space.

Need to generate

ol =l Flux compactification

Tachyon field on unstable D-brane or brane-

cllle]EIEReEIAMN Tachyon inflation BEETelg)e]gRel=E

haves like pressureless dust at late times.
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A combination of moduli
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Tachyonic instability pro-
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tionary phase.

Many other models. ..
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Singularity and string theory

String theory is a consistent quantum
theory of gravity and matter.

Finite extent of the string suggests
that strings may not see a singularity.
In some cases, this happens for spa-
tial singularities.

Can string theory resolve the space-
time singularity in ?

Can it explain four dimensions?
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Whether string, whither string

If string theory describes nature, the confirmation
may well come from the sky.
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Acnowledgement

Wayne Hu’s cosmology page:
background.uchicago.edu/ whu/
NASA homepage

www.damtp.cam.ac.uk/user/gr/public/index.html
and many others via google.
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