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Introduction/Motivation:

The evolution of spacetime is governed by Einstein equation.
And it is very hard to solve Einstein equation in general.

Our aim in this talk is to find new perturbative solution to
Einstein equation.

We will use the number of space time dimensions as
perturbation parameter.
Hence, the solution would be a series in 1

D expansion.
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How large D simplifies the problem

Emparan Suzuki and Tanabe (’2013) observed the following:

Schwarzchild black hole in Kerr-Schild coordinate is given by

dS2 = −dt2 + dr2 + r2dΩ2
D−2 +

( r0
r

)D−3
(dt + dr)2 (1)

Now, if we take r > r0, and keep the ratio r0
r fixed, then

lim
D→∞

( r0
r

)D−3
= 0

So, in D →∞, space time outside the horizon becomes flat.

But if we take, r = r0
(

1 + R
D−3

)
Now if we keep R fixed instead of r0 and take D →∞

lim
D→∞

( r0
r

)D−3
= e−R

This means that if we go closer to the horizon as we take
D →∞ we will find something nontrivial from flat space.
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So, in large dimension (D) Schwarzchild Black hole becomes a
thin shell of thickness O

(
1
D

)
around the horizon propagating

in flat space background or in general AdS/dS background.
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Setup

Our background is AdS/dS or more generally any asymptotic
background that solves Einstein equation.

We will work with Einstein-Hilbert action with cosmological
constant

S =

∫
dDx
√
−G [R + Λ]

The Evolution of space-time will be governed by the Einstein
equation

EAB ≡ RAB −
(
R + Λ

2

)
GAB
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AdS-Schwarzchild in Large D/Ansatz

AdS-Schwarzchild Black Hole in D dimension in Kerr-Schild
form is given by

dS2 = −(1 + r2)dt2 +
dr2

1 + r2
+ r2dΩ2

D−2

+
1

1 + r2

( r0
r

)D−3
(
−
√

1 + r2dt +
dr√

1 + r2

)2

Now we will consider more general metric which we will call
“Ansatz Metric”

G
(0)
AB = g

(AdS)
AB + ψ−D(nA − uA)(nB − uB) (2)

Where, ψ is any arbitrary function. and uA is an arbitrary one
form velocity field.

nA =
∂Aψ√
∂ψ · ∂ψ

, n · n = 1, u · u = −1, n · u = 0 (3)

Where all the ‘·’ is with respect to g
(AdS)
AB
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Two nice thing about this metric is that

For ψ − 1 ∼ O(1) it becomes pure AdS.

And, ψ = 1 surface is a null surface, which can be argued as
the horizon of the black hole.(

nAnBG
AB
(0) = 1− 1

ψ−D

)
As D →∞ the metric blows up for ψ << 1.

But ψ < 1 region is causally disconnected from the ψ > 1
region.

Therefore for our construction we will be concerned about
only the ψ > 1 region. And neglect the region ψ < 1.
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Scaling with D

As D→∞ both the number of equations to be solved and the
variables goes to infinity. So, no perturbation technique will
work.

To get rid of this complication we shall assume that a large
part of the geometry is fixed by some symmetry and the metric
is dynamical only along some finite number(p) of directions.

dS2 = GABdX
AdXB = G̃ab(xa)dxadxb + f (xa)dΩ2

D−p

If TA1,A2,...An is a tensor of order O
(

1
D

)k
maintaining the

symmetry then its divergence is of order O
(

1
D

)k−1
.

TA1,A2,...,An ∼ O
(

1

D

)k

⇒ gApAq∇ApTA1,A2,...,Aq ,... ∼ O
(

1

D

)k−1

However, we should emphasize that for our calculation we do
not need any details of the decomposition. The only aspect of
it that will be used for our calculation is the above scaling law
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Solving Einstein equation at leading order

Now we will calculate Einstein tensor on the ansatz metric
G

(0)
AB .

Einstein equation can be written as

EAB ≡ RAB − (D − 1)λGAB = 0

Ricci tensor evaluated on G
(0)
AB = ηAdS

AB +ψ−DOAOB is given by

RAB = R̃AB + ψ−D

(
DN

2

){
[DN − (∇ · O)] (nAOB + nBOA) + (K − DN)OAOB

}
+

(
ψ−2D

2

){
DN [DN − (∇ · O)]OAOB

}
+O (D)

(4)

Where R̃AB is the Ricci tensor evaluated on gAB and is of the
order ∼ O(D)

Einstein equation to be satisfied at the leading order (O(D2))
the following conditions has to be satisfied

(∇ · O − DN)ψ=1 = O(1) and (∇ · u)ψ=1 = O(1)
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Subsidiary Conditions

So, we have found some conditions on ψ and O. But only at
the ψ = 1 surface.

Therefore there is a large ambiguity in the construction of ψ
and O. We will fix this ambiguity by some convenient choices
referred as ‘Subsidiary Conditions’

∇2ψ−D = 0 everywhere.
O · O = 0 and O · n = 1 everywhere.
PAB(O · ∇)OA = 0 everywhere

Where PAB = gAB − nAnB + uAuB
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Einstein Equation at First sub-leading order

After imposing the conditions mentioned in the previous slides
EAB now becomes of order O(D)

To cancel this order O(D) piece we will add 1
DG

(1)
AB with G

(0)
AB

Then at order O(D) EAB has two pieces one coming from(
1
D

)
G

(1)
AB which we will call Homogeneous part (HAB) and the

other part coming from G
(0)
AB which we will call Source part

(SAB). Schematically,

E ∼ HAB + SAB

We can choose G
(1)
AB in such a way that the order O(D) term

will be cancelled.

So we will get a solution of Einstein equation in the 1
D

expansion

GAB = G
(0)
AB +

1

D
G

(1)
AB + · · · (5)
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Gauge Condition & Explicit ψ Dependence

We choose a gauge such that OAG
(1)
AB = 0.

Under this gauge choice the structure of most general
correction is

G
(1)
AB = S1OAOB +

1

D
S2PAB + [OAVB + OBVA] + TAB

Where
uAVA = nAVA = 0; uATAB = nATAB = 0; gABTAB = 0.

We can define S1, S2, VA, TAB as

S1 =
∑
n

fn(R)sn, S2 =
∑
n

hn(R)sn

VA =
∑
n

vn(R)vn]A, TAB
∑
n

tn(R)[tn]AB

where R = D(ψ − 1), and sn, vn, tn are different scalar vector
and tensor structure of O(1)
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Source

The source (SAB) at first subleading order is given by

ψ−D

(
K

2

){
ψ−D

[
(u · ∇)K

K
+ (∇ · u)

]
OBOA + 2(n · ∇) (OAOB)−

∇2(OAOB)

K

+

[
(n · ∇)K

K
+∇ · u − uC (O · ∇)nC

]
(nBOA + nAOB)

}
(6)
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Solution at first subleading order

The variation along the radial direction is O(D) times higher
than the other directions. So we will get some second order
inhomogeneous ordinary differential equations.

We can decouple scalar vector and tensor structure and can
uniquely determine them given some suitable boundary
conditions.
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Different structure will be decoupled under the following
combination

∑
n

d

dR

[(
eR − 1

)
ṫn
]

[tn]AB =

(
2 eR

DN2

)[
PC
A PC ′

B − PAB

(
PCC ′

D

)]
SCC ′

(1− e−R)
∑
n

d

dR

[
eR v̇n

]
[vn]A =

(
2 eR

DN2

)[
uBSBCP

C
A

]

(1− e−R)
∑
n

d

dR

[
eR ḟn −

hn

2

]
sn =

(
2 eR

DN2

)(
uASABu

B
)
−
∑
n

vn

(
∇ · vn
DN

)
∑
n

ḧnsn =

(
2

N2

)[
OA SAB OB

]
(7)
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Boundary Condition and solution

we need two sets of boundary conditions to fix the integration
constants.

fn(R), vn(R), tn(R), hn(R) decays exponentially as R →∞.

It fixes one set of integration constants.

It turns out that trace correction will be fixed by this
normalization constant.

For fn and vn it will be fixed by the requirement that the
ψ = 1 is the horizon and uA is its null generator. This will
give the following condition

fn(R = 0) = 0; vn(R = 0) = 0; (8)

For tn(R) the other integration constant could be fixed by
demanding the solution is regular at the horizon

It turns out with the above boundary condition, and with our
choice of subsidiary conditions correction at the first sub
leading order vanishes.
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Constraint equation

After determining all the correction we see that Einstein
equation will be satisfied upto first subleading order provided
the following constraint equation will be satisfied

The constraint equation at the first subleading order.

Pνµ

[
∇2uν
K
− ∇νK
K

+ uαKαν − uα∇αuν
]

= O
(

1

D

)
∇ · u = O

(
1

D

)

Here Kµν is the extrinsic curvature, K is its trace and u is the
velocity field on the membrane.

Pµν = gµν + uµuν − nµnν
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Constraint Equation

Now we count the no of equation and no of variable

Pν
µ

[
∇2uν

K
−
∇νK
K

+ uαKαν − uα∇αuν

]
= O

(
1

D

)
∇ · u = O

(
1

D

)

The vector equation is projected equation perpendicular to n
and u, so, it gives (D-2) equations. And we have one scalar
equation. So, total number of equation we have is (D-1)

The number of variables we have: one shape function(ψ(x)).
And one velocity field on the membrane i.e. (D-1) functions
but it satisfies u · u = −1 that gives (D-2) function. So, total
number of variables we have (D-1).

So, we have well posed initial value problem.
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Second Subleading Order

Provided the leading order membrane equations have been
satisfied Einstein tensor will be O(1) quantity.

Now we can do the second subleading order calculation.

The fact that the first subleading order correction vanishes
simplifies the next order calculation a lot.

For the source part we need to calculate Einstein tensor on
the ansatz metric upto second subleading order.

Homogeneous part has universal structure at all order, we
don’t need to calculate it.

Exactly following the same steps of leading order we have
determined the metric correction at second subleading order,
and also the correction to the membrane equation.
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2 nd order corrected equation

Scalar equation upto second subleading order becomes

∇ · u =
1

2K

(
∇(αuβ)∇(γuδ)P

βγPαδ
)

+O
(

1

D

)2

Vector membrane equation upto second subleading order
becomes
[
∇2uα

K
−
∇αK
K

+ uβKβα − u · ∇uα

]
Pα

γ

+

[
−

uβKβδKδ
α

K
+
∇2∇2uα

K3
−

(∇αK)(u · ∇K)

K3
−

(∇βK)(∇βuα)

K2
−

2Kδσ∇δ∇σuα

K2
−
∇α∇2K
K3

+
∇α(KβδKβδK)

K3
+ 3

(u · K · u)(u · ∇uα)

K
− 3

(u · K · u)(uβKβα)

K
− 6

(u · ∇K)(u · ∇uα)

K2
+ 3

u · ∇uα

D − 3

+ 6
(u · ∇K)(uβKβα)

K2
− 3

uβKβα

D − 3
−

(D − 1)Λ

K2

(∇αK
K
− 2uσKσα + 2(u · ∇)uα

)]
Pα

γ = O
(

1

D

)2
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Matching with Known Result

We have linearized the membrane equation around AdS
Schwarzchild black hole and calculated Quasinormal mode
frequencies.

ωsr0 = ±

√
l

(
1 +

r2
0

L2

)
− 1− i(l − 1)

ωv r0 = −i(l − 1)

This matches with the QNM frequencies calculated by EST
from gravitational analysis.

We have checked that Known exact solutions namely
AdS-Schwarzchild Black hole, AdS Black Brane and rotating
black hole in AdS satisfy the membrane equation.
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Connection with Fluid Gravity(Ongoing Work)

We can try to match the result of ‘Large-D’ expansion with
another perturbative expansion namely ‘Fluid-Gravity
Correspondence’.

We will use ‘Large D’ expansion over the metric corrected upto
first subleading order in derivative expansion(which is known).
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Connection with Fluid-Gravity

Once we know the metric upto first subleading order in derivative
expansion, we have to follow the steps of large D expansion.

Calculate the horizon r = r0(xµ).

Calculate the normal of the horizon (nA), the extrinsic
curvature KAB and it’s trace K .

Calculate the null generator of the horizon. On the horizon
uA = GABnB , where GAB is the inverse of the full metric.

We have checked that membrane equations will be true
provided ideal fluid equation has been satisfied.

Pνµ

[
∇2uν
K
− ∇νK
K

+ uαKαν − uα∇αuν
]

= O
(

1

D

)
∇ · u = O

(
1

D

)
This implies that with field redefinition we should be able to
write the fluid dynamics equation as a membrane equation.
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Future Directions

To explore the relation between ‘Fluid-Gravity’ and ‘Large-D’
upto next subleading order is one immediate future direction.
Which may help to understand the connection between these
two approach better.

To calculate the stress tensor in presence of Cosmological
constant and to derive the equation of motion from its
conservation is another future direction.
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Thank You
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