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This talk i1s about:

» Conserved correlators in FT
» Effective actions

» Higher spin fields

* Fronsdal equations

o Lo symmetry

» Application to SFT



First, some examples, in 3d:

spin 1



Free massive fermion model in 3d
Ection T

S = /{Fm [ivy" Dy — mpb], D, =0, + A,

where A, = A/ (z)I'" and T are the generators of a gauge algebra. The
generators are antihermitean, [T%, T?] = f***T, with normalization
tr(T%T") = nd?®. The current

Jii(x) = ¥y T
Is (classically) covariantly conserved on shell
(DJ)* = ("6 + f**°A)JS =0

(see also Dunne,Babu,Das, Panigrahi)
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Free massive fermion model in 3d (cont.)

‘ The effective action is given by \

o0 gn+l

i
w4 = — / [ [ dzia®1#1(zy)... A%nEn (20)(OIT J3L (21) . .. JT (zn)|0)
) i=1

n=1

We will consider 2-pt and 3-pt current correlators,
(OITJ2(2)J.(¥)[0), and (0|7 J;(z) Ty (y)J3(2)|0) M

whose Fourier transform are JgJ (k) and jﬁﬂj (k1, ka). The one-loop conservation law in
momentum space Is

kHJ50 (k) =0
—igh JEPS (k1 ko) + FAP9T55 (ko) + £A°4 TS5 (ky) = O

where g = k1 + ko.
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Free massive fermion model:2-pt

. o

he 2-pt function is

. n m k
Javledd) (k) = ga‘ﬂbeﬂmkﬂ — arctan —

where k = VEk? = E. The IR and UV limit correspond to = — oc and 0,
respectively. We get

1 R

Ja n .4 o
JabEdd) (k) = — 5%, o k { v

2 iy
3

13

Fourier anti-transforming and substituting in W (A) one gets

fda::-:e“”" AT 0L AN

L o
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YM in effective action

. -

he IR limit of the 2pt current correlator is given by
i 1

jﬂbﬁeven} k) —
o (k) 47 3|m|

5.;1!;(;{:” ky — kzr’}'ﬂv)

which is local. Fourier anti-transforming it and inserting it in
the formula for the EA

S~ — [ &z (A%0r8” A% — A°OA™)

T
which is the lowest term in the expansion of the YM action

SYM p— l/dBQITI' (FHHFHF)
g

Lwhere g ~ m. J
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spin 2



E.m. tensor correlators

‘ MNext come the e.m. tensor correlator. It is naturally coupled to the metric. The action in the \
massive model is

_ _ 1 1
S = f d*ze [{WELY Vi —mPy], Vi — O+ swueeSt,  BP — 2 |48,

The mass term breaks parity!
The energy-momentum tensor

THY — i'{‘f_) (Eg"}‘u EU + b u) .
Is covariantly conserved (on shell): V,THY = 0.
At quantum level (the Fourier trasform of) the 2-pt correlator is

2 2

= (odd) B m L5 kuky\ k° +4m |k|
ﬂ!"m{,‘,,”|J (k) = HEHFP kT [2m ('il'?p;:., — 2 ) + ('r]p,;. + 2 IE] arctan om |

‘ In the effective action the e.m. tensor couples to hy.., where gy = Mpw + hpe + .. .. \



Gravitational CS
|

n the IR and UV limit this corresponds to the action term

-

K
Sr-odd — 192ﬂfd3:rewph””6‘“{6#m—n#;..D) h*P (1)

This is nothing but the lowest order expansion in A, of the gravitational
Chern-Simons action in 3d.

_ K 3 A b 2 b
CS =—5= fd T etV (8#.::.::} Wxba T §Wpa wybcmkﬂ)

# |nthe IR limit we find k = 1 (the action is well defined)

# |nthe UVIiimit k = Ikl So again the limit vanishes unless we
consider N ﬂavnurs in which case we can take the scaling limit that

L leaves \ = N fixed. J



EH in the effective action

‘ MNow let us go to the IR limit of the even part of the 2pt e.m. tensor comrelator. \

ilm| [ 1
96m | 2

(Tuw (k)T ap (—k))iten = ((Bpkatp + A — p) +p —v) —

kﬂ
— (kpkumap + ka kofuw) — = (MpaTvpe + MupTxr ) + kﬂﬂﬂvﬁhp} :

This is a local expression multiplied by |m|. Fourier anti-transforming it gives nise to the
action

S ~ |m| fd% (—20,hH2 8, hY — 21 8,8, h* — WY Olhy,,, + hIh)
This is the lowest order term in the expansion of the EH action:
1 3
SEH = — /d I 4 0 R
2K

where Kk ~ 1%[

|
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Spin 3 and higher



Higher spin currents

‘ In the massive fermion model in 3d we have other conserved currents. The next after the em \
tensor is the third order current

_ 5 _ 1 _ m? _
Juipaps = WYy OpaOug) ¥ — Eﬂtﬂlmﬁﬂﬂﬂa}w T gﬁ{m#zﬂnmﬂa}ﬂﬂw - ?mﬂlﬂzmﬂaiw

This is conserved (on-shell). We consider the external source BE¥* and couple it to the
theory via the action term

/ d*z.J,, ) BH

Due to current conservation this coupling is invariant under the (infinitesimal) transformations
6Buyx = O(u Ay

In the limit m — 0 we have also invariance under the transformation
0Buux = Apuua)

‘ which induces the tracelessness of J,,, » inany couple of indices. \



2-pt B correlator

‘ We can construct the effective action for B,,,,, with \
=, int1 = i N
WIBl =3 [ T] 2B @) (01T Juywan, (21) - T an (20)10).
n=1 : i=1

by computing the n-pt functions. For instance, the 2-pt comrelator (after subtraction), in the IR

IS
Flodd, I R 1 14 8 4
Jiilciﬂzﬂaglb'zvaik] = EE#1V1U;‘:U[EE NMpapzThvzrs — ﬁk’ Npzrz Mpzig
1 5 16 4 23
— ﬁk (FvzkusMuaps + KuzKpaMvavs) + ﬁk kpskvaMpzvs — mkﬂfzkﬂakvz kva]
and in the UV
Fodd, UV 1 m 1 2. 5
Jiacllﬂzﬂal’ivzvz (k) = Eﬁ €pyvyok? [Ekﬂz kpaky, by, — Ek kpg Rug Musvs
k2 1.4 1 4
+E (FvgkvaMuapa + KuskpaMvavs ) + Ek Npzva NMpgrs — ﬁk Wﬂz#zﬁb‘zvz] .

|
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Odd effective action

‘ The UV expression corresponds to the effective action term \

—~— / d2 €y o [3333”1“2”35;;35#35:;231:3 BY1V2V3 55”3#1#2#3D3u35v33”11’3”2

—+287 B”lh;ﬁﬂﬂvzﬂya Bvivzva 4 497 BR1BzE3[(2 BY1 550004
_SEBFIAA EFBFIPP]

where b, 5 = Byoa + ...

This i1s a slight generalization of an action proposed by Pope and Townsend (1989)

3
_ fﬂf3m €purv1o [Eﬁﬂhlul#zﬂaﬂﬂzﬂuaﬂvzﬂvshv1v2v3 — AHT hHLEZHES Dauaﬂvahplyapg

4287 hH1H2ZH3 [P Ry #2#3]
‘ one can see that they are equal if we set B**, =0 \

—pAr
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‘ For instance, for the field B one can extract from the even 2-pt function the following action \

1

Sp ~ f <{5u3u1#z#3}2 — 3(8-Buypz)* — 38-8-B* =

1
8-8-By — ﬂvﬂvﬂvﬂﬁ a-8-3- H)

This gives the equation of motion

1

1
OByux — 08 Bya + =0u0,8-0-By — =

9, 0,8,0-8-8-B =0
Mow take the trace with respect to any two indices of this equation and you will get

1
8-8-By = OB} — 9x0-B' + 5020-0-0-B

Upon replacing this into the third term above one gets precisely the nonlocal Fronsdal
equation for massless spin 3.

-



Fronsdal eqgs for higher spins

‘ The Fronsdal equation of motion for a (completely symmetric) spin 3 field \
wurx 1S the following:

Fuvx = Uuvs — 0p0-pua + 0uOppy = 0
where 0,0 -¢,) = 8,0-p,x + perm.,. Under dp 5 = 9, Ay + perm.
6FHHJL — 36,_;51;6}._{1!

So covariance requires tracelessness A’ = 0. Unnatural!
D.Francia and A.Sagnotti (2002) proposed a way out via nonlocality.

1

«Jruu.l — ]2

8,0,0,0-F' =0

This is invariant, but nonlocal. However nonlocality is irrelevant (a gauge
‘ artifact). This can be seen via a compensator. \

_—pif



The compensator

W

e can rewrite the non-local Fronsdal equation as
Fuvr = Oppuar — 3ﬂﬂ-gﬂy_h + 3&‘3&@!& = 0,0,0

where
3
L]

2

a-p" — BE

9-8-8-p

Yy =

The field « is called compensator, because its transformation property
under 6o = 39\ is

da = 3N\’ — SF = 383N\

It allows to write a local Lagrangian. So, the nonlocality of the initial
eguation is only a gauge tail which serves to gaurantee covariance.

| o
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So what’s going on?

In the effective action of a massive 3d fermion we have
found all the local action for spin 1, 2, 3: YM, CS, EH,
Fronsdal, Pope-Townsend,....

s there more?

Yes. Fortunately we can compute the effective action of a
3d fermion exactly for any current.



Spin § currents

-

he spin s current has the form \

T e = PP Byt + e

We couple it to an external source a*1---#= through the term

[ d3z atr#e(2) IS .. (x), compute the 2-pt function (|7 J5Y . J5) 4. |0),
and insert into the generating function

E-.n+1

Wia,s) = 32 o [T dtaasiosin (e . atieson ()
’ i=1

n=1

X 1T Iy, (1) - T, (20)]0).

to obtain the effective action. In particular a, = A,, a,, = h,, and
T b,u;u}h-

| -
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Exact 2pt correlator for the e.m. tensor

‘ The correlator is \

i 4 _1 [(2m}y 3 23 a4 —1 [ 2m (k) :
192ﬂk((gﬂm coth (T) A8km 4k“m — 6k~ coth ( A )) (?11 i ng)

+ (48??14 coth—1 (%ﬂ) — 24km® — 24k2m?2 coth—! (2%”) 10k3m

2
—I—Ek4 coth—1 (g)) {:ﬂ-j-ﬂ{k}-ﬂjj{:ﬂg-ﬂ{k}-ﬂ-gj)

where we use the projector w(*) and the compact notation:

kyk
w8 = — B (1w ma) — m kg
after subtracting
g, . im° 2
O(m=) : = ((n1-m2) = + (n1-11) (N2-n2))

| o

which is not conserved, but local. —pr



—

Correlator tomography

Expanding in powers of m \
O(m?) - 0
O(1n) :;:T k2 ((nl (k) -ng) 2 _ (ng-w®) ng)(ng -tk ng})
O (m") : 0
O(m 1) : . ket (nl .qr (%) -ng) S l(nl R ) (ng (R ng)
S0 3
O(m ™ ?) - 0

These terms are all conserved. The O(m) term iIs the linearized

version of the EH equation of motion. All the other terms differ
only by pure gauge parts.



So far we have considered only 3d examples, but the
previous analysis holds in every dimension.

We have calculated explicitly all types of 2pt
correlators (also mixed ones) for d=3,4,5,6,7,8 for spin
s=1,2,3,4,5, both for a scalar and fermion model, and
also obtained formulas in any dimension.



d>3



Example in 4d

‘ In 4d (in any even dimension) one has an additional problem of regularnization. The way out \
Is to do the calculations for d = 4 + 4. For instance in the case of the e.m. tensor the 2pt
function in the IR takes the form

L]

i
16(2m)2

i 5 [1
T T16(2m)Z [E (kpkamvp + A < p) +p—v) —

~ 1 3 1 41
T k — m4 > N S — log ——
uvap (k) (27 p + MpATep + MupMen) ( 15 + 6 3 (”]‘r + log —; ) ;

;;_.2
— I[k“k;,- Map + ka kpﬂpv} Y {ﬂﬂhﬂvp + ﬁ#pﬂvh} + kiﬂgvﬂhp}

11 1 0
- (ﬁ + = — Ly +logar —logm 1)

The term proportional to m? is clearly not conserved, but is local and can be subtracted. The
term proportional to m?2 comresponds to the lowest order term of the Einstein-Hilbert action,
with a coupling

i (1 1 1 . )
—_ _ log dx — 1
‘ 16(2m2 (66 + 13 — 137 T legdm — logm?) \

_—pAS




Example in 6d
-

In 6d for spin 3 the full 2pt comrelator is too big.
Here i1s a part of the expansion in % (tomography)

T 2
2y _ 2, _ _ M7k _ _ k- (k) 3
v (m=) Orp(m~) = 317530073 (32 ( 210 ]ﬂg( mﬂ) 4+ 389) (nl T 'il'lg)

2
+ (3335 log —m) — 9454) (nlvﬂ{k}vﬂ,g) (n1-7w%) ny)(ng-wlk) -ng})

'e) 4 — O 4y — 16 (—1? 301 (— )) (k).
v (m”) rr(m=) = Edﬂmwg ( + 30 log 3 (ﬂl ™ ﬂrﬂ)

_ _ ) e L) L
—|—( -iLS[I-l-:-g( mﬂ) + 51'?) (ﬂl T ng) (-7 11 ) (e - ng])

im®%k? [ 64
Ouv(m®) — Orr(m®) =— 264 S (ﬂl'ﬂ{k}'ﬂg)g

k‘ﬂ
— (lalﬂg ——2) — 1?) (ﬂl—ﬂ{k}-ﬂg> (n1-w'%) nqg)(ne-wlk) -ng})
T

|

The last two lines are a version of nonlocal Fronsdal equation for spin 3.






You can find plenty of complete formulas in
ArXiv:1609.020088, 1709:01738
(miracles of Mathematica)

These results can be cast in a
more ‘geometrical’ form...



Correlator tomography for spin s

‘ For spin s the 2-pt correlators can be calculated exactly. After subtracting \
some local terms, their structure is a generalization of the one for the e.m.
tensor. It is a superposition with k&, m-dependent coefficient of

[s/2]
E® (k,n1,n2) = > aiAl? (k,n1,n2)
i=0
where a; are numbers, and
1
f-ﬂ'}{k ny,ng) = o1z (ﬂl"ﬂr{k}'ﬂg)‘g
- 1 _
A (k,ny,ng) = (s1)2 (n1-7™ ng) 2 (ny- 7™ ny ) (ng- 7 ny)
H, 1
A (kyn1,mg) = (n1-7™ 1) (n1- 7™ n1)! (ng- 7™ -ng)’

o -
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General eom’s

‘ [3.-' 9]

We can represent the eom symbolically as k2 > o
this equation in the form

.;ﬁfsm’{k, 11, o) = 0. VWe can write

kﬂ{nl . (&) -ng]s_m (121 (&) -T11 ]'E (120 qr (&) -ng}z

l=/2]
<__) (LSIEJ) (I_S;iz_g ”) p!{?};‘j S__EZ]_”LL]H (1 -wF) WP GUVIPE iy, na

where G'™) are generalizations of the linearized Einstein tensor. On the other hand

™" 1 +1 _
G = 3 (— 13:’:'“1’_31'3i n? F(m)Pl b1y _ ) o R s =2(n+ 1)
p=0 nl Dlﬁﬂ'ﬂis}[“] 8 =2n+1

where F(n) gre the Fronsdal operators and R the generalized Jacobi tensors, defined by

L m* R ) =30 D ()= (n-0) (! o)
(s1)2 sl(s — I

| - |
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Tadpoles and seagull terms



Tadpole and seagull terms

P
\

\
/



An example: spin 2 in any dim.

‘ The transverse and non-transverse parts of the bubble diagram are \
d g O mT2"T (“’_%}
TP Y (k) = —27 39 Zlimdn =2 B K4 ((2n — 1)k b — gii g
— 2n(2n + 1)1
and
i pr —3—1:|'.—|—|_d'J = d, g2 d JELS __PLLF pLpL o LALF
nt (k) = -2 ZHEimiw Il —5 | (07T — Py

The tadpole and seagull contributions are, respectively,
OHME(|) = _9—2—d+1%] g S (—g) nHE — e gtk
and

(=)

| |

~ o
THEVY () — E—B—d—I—L%J imdw%I‘ (_E) (IpHY pHY — 2npHHEnYY)



‘ The Ward identity in momentum space Is \

fop THEVY (f) — [—kvﬂw + %k“ﬁw} &

Inserting in T““"’"{k] all the contributions, this identity is satisfied.
For instance, in the IR the effective action is

=1 o o d l_"(l— %
W ~— o l—dtlzlmdyr—= f{:ld:r: g = | I (—E) — A3 R
Tr:
—d
r(2— %) RupapRMYAP _ 2R, R* 4+ LR?) 4 + O(R®)
S.ll.md J&L5A D pLLs 2] "

—4-—24d4+ |2 2 _4d
w U g2 e
(—1 + et7d)I" (—"‘—2 )

f d?2\/G [(d — 1) Ryuw 2, (18 ~2 REVAP

‘ +6 (R“L,APEI%_ER””“P — 2R, O0%F2RMv 4 %REI%_ER) + .. } + O(h®) \



In view of these results the first consideration
is: HS’s theories are among us, they are
natural developments of ordinary theories.
They are nothing exotic.



For HS theories, see:

Vasiliev, Prokushkin, Metsaev,... Bekaert, Young,
Mourad, Francia, lazeolla, Sagnotti, Campoleoni,
Fredenhagen, Fotopoulos, Tsulaia, Taronna,...

Their ambition is to construct sensible HS theories
and, to a certain extent, they have succeeded (3d, 4d

AdS...)



Provisional conclusion:

Free field theories generate one-loop effective actions
which contain information (action, eom,...) about a very
large spectrum of (if not all) local field theories physicists
have been able to invent.



But the higher spin theories so far are in
linearized form. Is the correspondence
only valid for free higher spin theories?

The answer is: no! The correspondence
may extend also to interactions.

Let us consider some examples



Interaction



Free massive fermion model:3-pt
- o

- d3p 1 1 1
Jrebe(p, ko) =i | ——=Tr Te LT? Te )
o (F1, k2) (2m)3 T P — — p— Ky —— p—d— m

he 3-pt function is more complicated

The result is a generalized Lauricella function (Boos,Davydychev). In the
IR we find

[T8 PN DD JLLr N
=>0

o~ 2n
jlfubc{ﬂdd}(klr .Icg) ~ 3 L E : (_"-"‘EI) fﬂhﬂf{in} I:kl, kg:l

and, in particular,
If.:?ﬂh{kl:' kﬂ} — _BE,L.:L-'A

‘ which corresponds to the action term \

~ /d3m eHv X fabe Aa Ab A



Free massive fermion model:3-pt (¢cnt.)

| b o

utting things together we find the effective CS action

cs = - dE:.-:Tr(AﬂdA—kEAﬁAﬂA)
4T 3
# |nthe IR k =1, so the CS action is invariant also under large gauge

transformation.

» » Inthe UV things are more complicated. Eventually we get the
same action with k = 7w 7+. S0, the UV limit is O.

# |f carries a flavourindex: =1,..., N, the previous result is

multiplied by N, and « = #N 7-. So we can consider the scaling

limit N — oc, =~ — 0 and « fixed and finite.

Important! Both 2-pt and 3-pt correlator satisfy the Wl's of CFT (and they
re pure contact term)!






However it Is clear that we cannot
proceed by trial and error... it's too
complicated!

We have to find a systematic way, a
method to construct HS theories from

EA'S.



Another approach: worldline quantization

In simple words: quantize a particle worldline X™ with the Weyl
guantization method and interpret a field as a function of the
gquantum X™

Strassler, Segal, Bastianelli, Bonezzi, Boulanger, Corradini, Latini, Bekaert,
Joung, Mourad ...



Vorldline quantization of a fermion syster

‘ Let us consider a free fermion theory \

So — f d%ax P (iy-8 — m)b,

coupled to external sources and use the Weyl quantization method of a worldline, which
becomes a second quantization when applied to fields. The full action 1s expressed as

S = (| —v-(P — H) — m|y)

The symbol of P# is the momentum pH  and the symbol of His hix, p), where

o
1
¥ (xz,p) = > s T (@R, - Py

=1}

Now interpret v»(x) = {=|v), then

=00

L S = SU+Z/d‘dzz 53“1 .- Bz#n’tﬁ( —I——:]‘Tp,h,“#1 F-Lﬂ.[:_'r]‘:r,{r(ﬂ';——)l J



‘ The tensor h#H1---BEn’g |5 iInearly coupled to the conserved currents

(=) _1_9 O 7 z — =
Jppir o = n! Hzrr Bzﬂnw(m_l_ 2) T (-T 2} |z='3"
For instance
J;{,Llj = E’]"nw
(2) : = T
Jppy = > (5{#11’5’7’#}%& — ﬁw{#‘ﬂﬂl}w}

= owm om

and 5 1s off-shell symetric under
8v-h(x, p) = v-Oze(x, p) — i[v-h(z,p) T e(z, p)]

and

L 8 (x, p) = ie(z, p) * ¥ (x, p), Uz, p) = fddy’qﬂr (:c — %} eiv-P

]

(1)



‘ The quantum effective action is formally W [h] = NTr[ln G] which is regularized via \

[ il ] e
The crucial factor i1s the heat kernel
Klg|t] = Tr [e_tﬁ] — Tr [e“f’ﬁﬁ—ﬁﬂm?‘]

This kernel can be perturbatively expanded, K [g, t] = 3_ 2% (K (™H--H(£)|RT™)), where

it E5 i

e .
ipg-| oo —@T 11 )
KHEL-En(p) wy,...,Tn, Un|t) = I I e ° ( T FCH- Hr(pL, - . Pn|m, t)

i=1

and, setting w’ = w — ie,

Eﬂll““n{pls'-'?pnlm:t} ﬂf iu

P, +m —iw’ pn_l—l—m—iu”r P, +m —iw’




Advantages and disadvantages of the two methods

The WLQ method gives directly conserved currents and symmetry
transformation properties. On the other hand the latter are rigidly
defined. The technology of perturbative evaluation is not yet well
explored.

The Feynman diagram technique does not determine the
conserved currents and symmetry properties, but leaves it to us to
construct them. On the other hand it has more freedom and its
technology is well developed.



At this point there Is an important new entry:

the Lo symmetry



Toward /L

The effective action is

W h] = i

f A T
/Hddll e I'K?Ll)‘____”n (1, P11, .. .. T, Pr) R (1, p1) ... RY (n, Pn)

n! (2m)d

Varying w.r.t. A" (x,p) one obtains the generalized EoM

‘ o0 1 ™ g ddqu 1
h}.#(;l‘-,p) — E . ; / | I o Ty (Q?T)d Wi,pl.:i-;f—bn (‘T:pﬂir"l'.pl'.' .- 111"-"1:'.'!9?1:'6)
L — " i—1

< h* 1t (x1,p1) ... R (xn.pn) =0

and from o-"W|h] = 0 one can prove that

T, (w0, p) = i[s(x,p) T Fu(x, p)]



L~ symmetry

A strongly homotopic algebra L .. is defined by vector spaces X; and (multi)linear maps L ; of
degree d; = i — 2 among them, that have to satisfy certain quadratic relations.
In our case we will need only three spaces Xg, X 1. X _ 5 and the complex

L L L
Xog 4 X 4 22 X 5 =210

The degree assignmentis as follows: (x, p) has degree O, h* (x. p) degree -1 and F,, (=, p)
degree -2.
The relations are

> (=D (—1)€e(03 ) Li(Li(To(1)ys - Ta(i))s Ta(itl)s > To(n)) = 0
i+ j=mn-+1 o
In detail
LT =0, Li1Ly — Lol =0, L3Ly+ LolLo + LiL3 = 0,

Stasheff, Lada, Hohm, Zwiebach, Gaberdiel, Barnich, Zeitlin, Blumenhagen, Fuchs,

Traube,. ..



L : defining [,

From 6./ one extracts

Li(e) = Ofe(x,p)
Lo(e,h)! = —i[h (e, p) t e(ar, p)] = —La(h, )0
Li(s.h.h)" = 0 i 7 >3

From the generalized EoM operator J,, one extracts

L n(n—1) = dip; N
bn(h,....h) = (—1) 2 /Hddmi @T}d "L-\?szll_)__!#n(:c._p._ TPl v v v s
Joi=1

x h*1(x1,p1) ... A" (xh, Pr)
and then

L, (hi.ho,... . h,)=Symm ¢, (hy,ho,....,h,)




L : veritying the relations
S

Ocy-h(x,p) =~-Orc(x.p) —ilv-h(x,p) Te(e,.p)| =~ D c(x,p)

ne can prove the L. relations using two crucial properties

and

0-F, (x,p) =1ile(x,p) T F(x,p)]
which can be decomposed as follows

ile % <<w£:‘3 ..... hH1 . hHn—1))]

_ 1

— Z {(WVL"‘L)I s 1 s REY [ % RME] L RHm—1Y)

o Z«WHLTU iy s REY L OB e L R ) =0



HS symmetry anomalies

‘ The effect of a HS symmetry transformation
Scht (x,p) = O e(x,p) — i[h* (x,p) T e(x,p)] = DI =(x, p)

on the effective action W is

0 — S-WI[h]
i 1 i d<
- > ) T ates 52
= (n—1)1 /) = (277)
x "1«’\?3})1____““(:[:1 Pls---sTn,Pn,€) DIF e(x1,p1) hH2(x2,p2) ... A" " (xn, pn)
But since
(0e502; — 0e102,) RH (x,p) = i DIH[e1 % e2](x, p)

A would-be anomaly 6:W [h] = Al=s, k] must satisfy a consistency condition

‘ des Ale1, h] — 62, Alsa, h] = Alls1 ¥ 2], h]



The L~ symmetry is characteristic of many
theories:

 Gauge FT's

e CS theories

 Double FT

* Closed SFT... and now....

 Worldline QFT’s



We have indications that in order to describe
guantum gravitational effect we need a theory with
infinite many fields. (Camanho-Edelstein-Maldacena-

Zhiboedov, 2014)

What this theory is, string theory, HS theories, ... at
present we don’t know...

A guiding tool could be the Lee symmetry



From the previous results it seems that it is sort of
incomplete to consider an ordinary field theory (with
one single field) in isolation, because its quantization
calls immediately for an infinite set of other fields.

It would seem that for a theory to be complete it
must contain all the fields it is able to excite upon
quantization (involutive). Is this possible or is there
an unsurmountable duality between matter and
gauge fields?



String field theory may be the favorite
playground to answer the previous
guestions.

So let us try to apply these ideas to SFT.



Effective SFT

Ehe previous results for HS theories prompt us to apply the same
approach to open SFT, i.e. to treat free SFT as the previous free theories
and try to compute the corresponding effective action. The appropriate
action is

S = ! /(GJ*Q@J—FE(I)*III:.L:(I))
20, 3

where @ is the original string field of SFT and W represents the string field
of external sources. This action is on-shell invariant under ¥ = QA.

Our program is to compute the one-loop effective action following the
worldline quantization method.

[




Worldline quantization for SFT

OSFT relies on the string expansion

i )
v(o) = x0 + V2 E T, cos(n o)

n=1

The dynamical modes are

T i (c al i o ” (a, + al

A0 p— I _— . . Py — — - f— —_— 1. _ iy

TL m T T . pn (:):I?.n_ 2 T T
ida - - - s D

beside x¢ and its conjugate pg = —i45—.

The string field ® is a functional of the modes »,, and can be represented
as & [x(o)] or @ [x,,].

The worldline (second) quantization consists in Weyl-quantizing the z,,’s,
‘ treating them as separate worldline particles.



We look for an analogy with the fermion model where the kinetic term [ 1>~ - 9> can be
represented by means of the Moyal product

/ ddIE(i‘-,p) Y - ﬁmfa;?;(:r.,p), where zt:(:c,p) — / A%y 1) (:c — g) e*Y'P

To this end one normally uses the split string formalism
2 L]
l27n—1 = T2n—1 + E X2n 1.2k T2n, T2p—1 = —T2n—1 + E X2n 1.2k T2n -

where X’ is an invertible numerical matrix, with inverse ). Then we define (symbolically) the
partial Fourier transform

al[f’c’me, Ype] = /[d:r.:,]e_gipﬂy'mﬂ Db Xre + w6, Xre — T06]

and represent the Witten = product by means of the Moyal product

—

D sy U —— D oxpy U

Bars, Matsuo, Kishimoto, Erler, Douglas, Liu, Moore, Zwiebach, Belov, ... _




The worldline quantization is different. We define the partial Fourier transform

Ef)[{;r.njpn}] — /[d{yn}] H t‘jipﬂ'yn ;i)[{:l'.n — y?n}]

T

and use the ordinary Moyal product

s pod] « Fllon. po}] = Bl puyle2 (P2 27 20T ) G 0y

The OSFT model linearly coupled to external sources is
_ ~ — 2 _ .
Se = f[d{:r}][d{p}] ((I)(LD — 1) — gtlr s s {I))

What remains to be done is the integration over the 'matter’ string field ®. We can use the
Feynman rules for SFT with propagator

lLo—1



Symmetry and perturbative expansion

- -

he symmetry induced on the external string field W is

spW[{w} {p}] = i(Lo — VE[{x}, {p}] — i[W[{z} {p}). E{=}, {p}]

The string gauge parameter E[{x}. {p}] contains many more modes than
the usual string gauge parameter of SFT.

This leads to another L .. symmetry for the effective action.

On the other hand the calculation of the one-loop effective action requires
the same Feynman diagrams as the OSFT.

L -



/ \
S -
- -~

e o —_—




'The one-loop spectrum

|7‘I’he analysis of these one-loop amplitudes was carried out long ago. The
on-shell case by Lovelace, Cremmer, Sherk, Shapiro, Thorn in the
framework of dual models; the off-shell case, using OSFT, by Freedman,
Giddings, Shapiro, Thorn, Bluhm, Samuel.

®» The one-loop planar diagram has singularities corresponding to
emissions of closed tachyons and dilatons.

®» The non-planar diagram has on-shell poles corresponding to the
closed string modes (o’ = 1):

M2 = 4n — 4, n—=0.1.2,...

®» But there are also off-shell poles at

1
M? — 5'}1—4, n—=—0.1,2,...



Concluding:

 there are indications that the so obtained
effective action contains to open-closed SFT.

» do the additional poles suggest a larger
theory?



Thanks



