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Introduction

@ This is a part of a series of work in collaboration with Ashoke
Sen, Sitender P. Kashyap and Mritunjay Verma.

@ Our final goal is to compute scattering of first massive states
of SO(32) Heterotic strings. We want to use pure spinor
formulation to do this computation.

@ The required unintegrated vertex was constructed by
Berkovits and Chandia (hep-th/0204121).

@ This also requires knowing the integrated vertex for first
massive states - Sitender’s talk.

@ However for the amplitude computation one also needs to
know the covariant 6 expansions of the superfields solely in
terms of the physical fields in the spectrum.

@ This was done in arXiv:1706.01196 (SC, Sitender P. Kashyap
and Mritunjay Verma) .
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A quick review of pure spinor

@ Throughout we work in d = 10, flat background and work
with 16x16 gamma matrices - (™), and (y™)*5.
m=0,1..9 and a = 1,2...16.

@ A pure spinor is defined as a Majorana-Weyl Spinor satisfying
(Ay™A) =0 for all m.

@ One starts with the World-sheet CFT given by the action

S = Oz//dzz (;aXméXm + ,Da(%a - Wa5>\a> (01)

@ \“ is a bosonic right-handed Majorana-Weyl spinor which
satisfies the pure spinor constraint.
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Basic ingredients

@ The ghost Lorentz and ghost number currents
Nmn_lw( mn)a )\B J—W)\a
— 2 a\Y B ) — Wa
@ The supersymmetric invariant combinations

1 1

1
m __ m m paqpB
™ = X" + 27,606

o The BRST operator Q = ¢ dz A%(z)da(2)

@ Our basic ingredients to construct any vertex are 17, d,,, 060
and N J ¢

@ We also need D, , the supercovariant derivative defined as
Dy = 04 + (vm)aﬂeﬁam
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Conformal weights and Ghost numbers

@ Only A* has ghost number = 1. All of the rest have ghost
number= 0.

@ Conformal weights for various fields are

I_I m
da
00“
Nmn

Ol |||

ACV
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The various relevant OPEs are

dﬂzﬁw(w)::—éjizﬂifﬂm(w) (2N (W) = —2B_ 998 ()

(z—w) 2(z—w)
al2)V() = 55 DaVW) V(W) =~ 0V (w)
(W) = 5
NN () = G N
s ) =~ @) = 5 a(w)

3(0‘/)2 mlq, pln
72(Z—W)2n [77] 7(Z—W)(
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Unintegrated Vertex

e To find the unintegrated vertex for m?* = é one starts with

the most general ghost no. 1 and conformal weight = 1
objects

V. = OXYAL(X,0)+ : 00°N*Bus(X,0) : + : dgA“CE(X,0) :
4+ ™A Hima (X, 0) - 4 1 INYEL(X, 6) -
4+ N A Fymn(X, 0) - (0.2)

@ One then solves QV = 0 subjected to Gauge condition
V -V 4+ QQ
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Unintegrated Vertex contd.

@ The gauge freedom can be fixed by imposing the following
gauge conditions

Baﬁ = (’Ymnp)aﬁ anp 7 Caﬁ _ (,ymnPQ)aB Cmnpq

'YmaﬁFan = 0 ,(v"Hm)a=0
@ The solution given in terms of a single superfield By, is

3, mn 1
sa = ?( ) ﬂDBans ’ Cmnpq = Ea[mBnpq] 7EOé =0= Aa

1
Famn = 8( [m n]a + 6q(")/q[m)oaﬁHn]ﬁ)

o and (9> — L) Bppp =0
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Field Content of First Massive level

@ There are 128 Bosonic (84+44) and 128 Fermionic d.o.f -
captured by spin 2 Bosonic fields bpypp, gmn and spin %
Fermionic field 12,

@ They satisfy

nN""gmn =0 0"8mn=0 0"bmpp, =0
0™Yma =0 Y™ =0

@ So any Superfield describing this multiplet (eg. Bmnpp) must
contain all these physical fields.

@ Our goal is 3-fold -
1. Give a fully covariant 8 expansion
2. Give an expansion solely in terms of the physical fields
3. Give a systematic procedure to do the 6 expansion so it
can be done upto all orders without any further input.
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Proof that B,,,, contains the physical d.o.f

@ Berkovits et. al. did the rest frame analysis to exhibit Bnnp
indeed has the correct d.o.f

@ Using SUSY transformation properties they argued
Do B = 12(y1PPwel),;  B%P =0; HS=-72V¢,
@ Also, V¢, is an arbitrary tensor-spinor superfield satisfying
(7a)**wg =0
o Further they defined a superfield G, as
Gap =2 Da'Y(O;Bwb)B ; NG =0
@ The physical fields are now contained as

b __ b . — .
®=G? ; babc = Babc ) 1/}2 = ‘U;
0=0 6=0 0=0
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Systematic Procedure for 6 Expansion

@ First of all consider the covariant version of the 3 superfields :
Bmnps Gmn and V[

@ Promote all the algebraic constraints on their zeroth
component to the whole superfield, i.e.

(Y)W =0 ; k™U,5=0 ; k™Bmmp=0
k"Gmn =0 & ™Gy =0
@ Find Differential Constraints which will lead to following
recursive structure
DDV 5 ~ D Gem + D Brnp
D'Bpnp ~ DU Dw,

DeGmn ~ D(e_l)wsﬁ
o Where DV = (6*Dy V)| ,_,
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Our Result

@ Let us first quote the final result right away

1 m i mn
Dawsﬁ = T6G5m7a6+ﬂkm8nps(7 p)aﬂ
i
_mkmBnpq(Vsmnpq)aﬁ
Daanp = 12(7[,”,,\]1,3]),1—|—24a’ktk[m(7|t|n\lfp])a

DyGsyy = 16ikp(7p(swm))o¢

@ Consistency checks
1. Must reduce to Berkovits and Chandia’s result at rest
frame.
2. Must be consistent with the solutions obtained for QV =0
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Using Group theory

@ Let us consider D, W,z first. We can decompose it to rewrite

DaWas = Ssm(y)a + Asne(1™)as + Ssimnpar (V""" s

note,
mnpqr __ t
o _ 5(Emnpqrs uvw('Ystuvw)aB
1
- (’Ymnpqr)aﬁ = afmnpqrstuvw(’ysmvw)aﬁ

Thus only the self dual part of Ss.mppgr Will be relevant

1

tuvwx
Ss;mnpqr = _afmnpqrtuvwxss;
S mnpar _ 1 mnpqrtuvwx g
- s: = _7|€ s; tuvwx
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Fields Number of Irreducible
Components Decomposition
| Som |
SD,U 1 1
S0,a 9 9
S0 9 9
S 9x9 103644
As;mnp H
A(]‘[)R{2 BOZ = 36 36
AD,u.bc QCS = 84 84
Ag peo Ix9%C, =9 x 36 9084 @231
Aqbed 9x9C; =9 x84 36 @ 126 © 594
H Ss;mnpq‘r H
SD,Uubcd 904 = 126 126
So.abede 9C; = 126 126
S beden 9x%C,=9x126 84 © 126 © 924
Sabedef 9x%Cs =9 x 126 84 @ 126 ® 924

Table 2.1: Irreducible decomposition of the fields Sy.m, As;mnp a0d Ss.mnpgr
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Group Theory contd.

@ The idea is to systematically impose covariant conditions on
Ss:m, As;mnp €tc. so as to keep only the physical
representations 44 and 84.

o k*V,, = 0 becomes
k®Ss.m =0 k*As.mnp = 0 k®Ss.mnpgr = 0

@ 36, 84 of As.mnp and the first two 126 in Ss.mppgr are
therefore removed.

@ So.m = 0 allows us to get rid of 1 and one of 9

o Self-duality of Ss.mppgr implies we only need to consider one
among Sa;bcdef or Sa;bcdeO-
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Removing non-physical irreps

e (v"W )z = 0 constraint gives

S5, =0

S[m,,,] + 3A575mn =0
Alm,npg) — 105%,smnpg = 0

@ This encourages us to guess Sjsp) = 0 and A(gpynp = 0
@ This gets rid of all the remaining non-physical irreps in Sgp,

@ For As.mnp we write
Aa,ch = A(a,b)cO ® A[a,bc]O
Asbed = A(ab)ed D Ala,bed]

The A, p)co contains 9 and 231. A(, )4 contains 36 and
594. All of these are gotten rid by our guess. The component
Ala,bcjo represents the desired 84.
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Removing non-physical irreps

@ To remove the remaining unphysical irrep, we set Ajypcq) = 0
and covariantize the constraint as

pmm pnn ppppaq A[m’;n’P'q’] =0

where, P™" = n™" 4 o/k™k" is a projector that projects onto
completely spatial part.

@ This simplifies to
Als;mnp) 30/ Als |t mn kK = 0

@ In rest frame this is precisely just A[zpcq) =0
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Removing non-physical irreps

The remaining irreps of Ss.mppgr are

Sa,bcdeO = S(a,b)cdeo@s[a,bcde]o

The 2nd term represents 126 whereas 1st term represents 84
and 924.

e Note that 5°_,  is precisely the 84. Further
Alabcjo = —105°% p0 - So we have only one 84.

@ In addition 5°_,, ., = 0. This kills the remaining 126 of
Ss,mnpqr .

@ One can get rid of the remaining 924 as well.

@ But the bottomline is the physical d.o.f are contained in the
components A5 mnp] and A[m npls-
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Obtaining the answer

@ Consistency with QV = 0 implies
1

i
A[s,mnp] 12 Csmnp = _ﬂk[sanp]

and

1 1
Ss,mnpqr = Ens[mAn,pqr] - mesmnpqr tuvaf7UVW

@ writing an ansatz for Agmpp as
ia ib
As,mnp = _%ksanp - %k[mBnp]s

@ one can determine a and b by imposing various constraints

i
As,mnp = ﬂ k[m Bnp]s
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The final answer

@ Therefore

1
Ss.mnpar (V""" )ap = 5 Anpar (7" )ap
@ Using this, we obtain
D,V _ 2 Gs.myT i ki B mip
a¥Ysf = T6 s,m'yaﬁ_‘_ﬂ [mBnplsVap

! npqr
_mk[anqr](7s P )aﬂ

@ One can do similar group theoretic analysis for other 2
relations.

@ Alternatively with this relation and proper covariantization of
rest frame result one can also arrive at the same results.
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The 6 expansions

1 i i
v = +=("8 — —(v™6) g kmbnps — — (75 " 0) gknb
sB wsB 16 (v )B 8&sm 24("/ )B 'mBPnps 144("/5 )B nPpqr
i i i
_Ekp('yme)ﬂ(w(m%)ﬂe) - ;km(v’"”"e)ﬂ(w[s,ynp]g) - i('ys "P96) 5 km(q1np8)
i i
=5 0 kK ks (77" 0) 5 (wprm0) + 20 (Y""0) g kmk' k(077 1,6) g

i
77(,Ymﬂpg)5km(9—yq[np9)gs]q - (’Ysmnpqe)ﬁkm(e’ant‘g) g”

i
1152

192
_ %kp(’yme)/awwpq(sﬂ) Em)q — T]ég(vmnpe)ﬁkm(g,ytuvw s Okt bus
,Wlal(wse)ﬂ(g,ynpqg)b,,pq - ﬁ(,\/s m"qu),Bkm(9’Ymvwnpq9)kthW
,%(yme)ﬁ(e’ynpqe)bnqumks — %(VSmnpqe)Bkrn(Q’ym"@bu Pag,
‘ﬁﬁm@)ﬁ(ev‘" (0)Pmyrq + %(wme)ﬁ(ey"Q'e)ka(sbm)qr

1
+%(7”’"P9)ﬁkm(ew’q[ne)bpsl,kq + o(e"
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mnp

3 3i
Bag = i |bmnp + 12(4pymn8) + 240 K  km(4pym6) + 5(0%mn 70) g0q — 1(97‘” mO)kt bunp

3 i 1
+Za'k’km(9wm 90) gpg — ;(emvwmnpe)k%"” = 5 ks ($v710) (OVstuvmnp0)
—diakskekm (0veun8) (VpysuB) + iks (Bvemn8) (Ypyst) + iks (8vemn8) (Yevspd)

+2iks (075tmB) (¥nep8) — iks (B7stmB) (wevnpd) + O(6%)

@ Straightforward calculation in principle but tedious to do by
hand.

@ A Mathematica code has been developed for this purpose and
it has been benchmarked with our known results up to 63.
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Calculating Amplitudes

@ Let us consider a toy example of tree-level 3 point function - 2
Gluons and 1 by field.

@ The tree-level amplitude prescription in pure spinor is
AN:<V1V2V3/U4-~/UN)
@ For our example it is simply
Az = (VIV2V3)
@ the pure spinor measure is normalized as

(M) (M"O)(AYPO)(Ovmnpt)) = 1

@ The evaluation of amplitudes requires several Pure Spinor
superspace identities, given by Berkovits, Mafra.
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Steps to compute the amplitudes

@ Write down the @ expansion of each vertex operator V' to the
desired order.

@ From the product, we keep only those terms which have exactly five
factors of 6.

@ Therefore each term in the product V1V?2V?3 always has exactly
three factors of \“.

@ Express every physical field in terms of its polarization and plane
wave basis. For example,

my...m _ .m...m, _ik-X
Aalakn(X) - a(xl...akn €

where a7t/ is the constant tensor-spinor polarization
corresponding to the physical field AT 7"(X).

@ Compute the correlation function (: ef1-X . eiko-X .. giks-Xp(xm) .y b0
separately, where typically f(X™) is just a product of various OX™.

@ The only thing left to compute at this stage is the correlation
function in Pure Spinor Superspace.
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Computing the amplitudes

@ The unintegrated massless vertex is given by A%A,. It's 0
expansion is

1 1 1
Aa(X, 0) = Eam(’Yme)a - g(‘S’YmG)(’Yme)a - aan(’Ypa)a(e’Ymnpg)

1 1
+%(w"’0)a(ewm"*’9)(answpe) + ﬁ(w’"e)a(ewm"9)(%5"‘79)&qu e

Table: The possible ways of getting five §s from product of 3 Vertex

operators

v %8 Vi
1 1 3
1 3 1
3 1 1
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Computing the amplitude

@ Let us see how it works for one such term
@ we choose our polarizations as

1 1) ip- 2 2) ipy- ik.

agn)(x) — e,(n)e/m X7 agn)(x) _ er(n)elpg X’ bmnp — emnpelkX
@ the polarization tensors satisfy the transversality conditions
1 2

er(n)pin =0 > el(n)pén =0 ) emnpkm =0
@ consider 1st term of NMMA*H,,,
@ Only the term containing 9X™ in "™ will be relevant
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computing the amplitude

1 1) _(2)
| = mnp n m
100007 ¢  ep el

using

1 r
(PO XrmO) V1) (015000)) = 2000155

with the world-sheet correlator I, involving the X fields

<: eipl-X(zl) . eip2-X(z2) . eik-X(Z3)aXm(z3) :> — i (pinz23 + pénzl3>
212

where, zjj = z; — z;
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computing the amplitude

| = i P o(1) o(2) (P1)m2z23 + (P2) mZ13
1920 P Z12
I NN 2zt 21
1920¢ % (P2)m 712
i mn,
= o0 e (Pa)m

@ This way one needs to compute all the terms

@ Terms involving d,, has to be handled carefully, since
15 B

dn(2)0°% (w) ~ 2?Zi‘”w) and one 6 can get absorbed by one d,,

@ Once again, straightforward computation, but tedious.

@ A Cadabra code is under development for computing any amplitude
given external states.
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Conclusion

@ We have given a systematic way to perform fully covariant 6
expansion of massive vertex solely in terms of the physical
fields.

@ The basic strategy seems independent of the mass level in
question, so one should be able to replicate this for higher
mass levels.

@ With the 0 expansion completely fixed, this will ensure there
are no new inputs are required for performing the 6 expansion
of the integrated vertex.

o With the integrated vertex now constructed as well we are
ready to compute scattering of massive states and hope to
report the results in near future.
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Thank you for listening!
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