
S-duality in N = 1 orientifold SCFTs

Iñaki García Etxebarria

1210.7799, 1307.1701 with B. Heidenreich and T. Wrase

and 1506.03090, 1612.00853, 18xx.xxxxx with B. Heidenreich



Intro C3/Z3 C(dP1) General Conclusions

Montonen-Olive N = 4 (S-)duality

Given a 4d N = 4 field theory with gauge group G and gauge
coupling τ = θ + i/g2 (*), there is a completely equivalent
description with gauge group G∨ and coupling −1/τ (for θ = 0 this
is g ↔ 1/g). Examples:

G G∨

U(1) U(1)
U(N) U(N)
SU(N) SU(N)/ZN
SO(2N) SO(2N)

SO(2N + 1) Sp(2N)

Very non-perturbative duality, exchanges electrically charged
operators with magnetically charged ones.

(*) I will not describe global structure or line operators here.
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S-duality

In this representation τ → −1/τ is u→ −u.

u = 1+iτ
i+τ

|j(τ)|
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S-duality in N < 4

Three main ways of generalizing N = 4 S-duality:
Trace what relevant susy-breaking deformations do in different
duality frames. [Argyres, Intriligator, Leigh, Strassler ’99]. . .
Make a guess [Seiberg ’94].
Identify some higher principle behind N = 4 S-duality, and find
backgrounds with less susy that follow the same principle.

(2, 0) 6d theory on T 2 → Riemann surfaces. [Gaiotto ’09],
. . . , [Gaiotto, Razamat ’15], [Hanany, Maruyoshi ’15], . . .
Field theory S-duality from IIB S-duality.



Intro C3/Z3 C(dP1) General Conclusions

Field theories from solitons

One way to construct four dimensional
field theories from string theory is to
build solitons with a four dimensional
core. These can be constructed in type
IIB string theory via D3 branes.

We have that g24d = gs.
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Field theories from solitons

Key idea [Witten ’98]

Since the resulting theory is determined by the geometry, one can
determine robust results without knowing much of the dynamical

details of the duality acting on the core of the soliton.

One just needs to know how the duality acts at infinity.

We then reconstruct the dual theory as that living in the soliton
with the right (dual) charge as infinity.
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The duality as seen from string theory
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Montonen-Olive duality from string theory

The charges of the O3 plane are classified by the cohomology on
the S5/Z2 = RP5 that surrounds the configuration (*). For fields
even under the orientifold action (F5), we have:

H•(RP5,Z) = {Z, 0,Z2, 0,Z2,Z} ,

while for fields odd under the orientifold action (H3, F3):

H•(RP5, Z̃) = {0,Z2, 0,Z2, 0,Z2} .

This is (co)homology with local coefficients. Working on the S5

covering space k ⊗ C ' γk ⊗ γC. For coefficients in Z we have
γk = k while for coefficients in Z̃ we have γk = −k. Ordinary
(co)homology theory otherwise: H• = ker ∂/ im ∂.

(*) Well, not really. [Bergman, Gimon, Sugimoto ’01]
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Montonen-Olive duality from string theory
[Witten ’98]

Under S-duality

Õ3− ←→ O3+ : SO(2N + 1)←→ USp(2N)
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Beyond N = 4

Montonen-Olive is defined for N = 4, but IIB S-duality is believed
to hold in general, so repeat the same program:

New N = 1 dualities
1 Engineer interesting N = 1 theories in IIB.
2 Figure out the charges characterizing the configuration.
3 Read the effect of S-duality on the charges.
4 Reconstruct the dual N = 1 theories from the dual charges.
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Results

We have recently completed this program for a large class of
N = 1 SCFTs. They are the ones arising from D3 branes probing
orientifolds of singularities. Some simplifying assumptions:

The geometry is toric, before and after orientifolding. (So I
can use the brane tiling formalism of [Franco, Hanany, Martelli,
Sparks, Vegh, Wecht ’05].)
The singularity is isolated.
The orientifold fixed point is isolated.

I will first describe the simplest example, given by an orientifold of
C3/Z3.

And I will cheat. (I will solve the problem in general later.)

Note that despite being N = 1 dualities in 4d, the set of dualities
we find here is (essentially) disjoint from known Seiberg dualities.
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The C3/Z3 orbifold
The isolated orientifold of C3/Z3 has a horizon manifold

X = RP5/Z3 ∼ (S5/Z3)/Z̃2 ≡ Y/Z̃2 .

It is easier to work in homology and use Poincaré duality

H i(X, Z̃) = Hdim(X)−i(X, Z̃) .

We are thus looking for elements of H2(X, Z̃). This can be
conveniently computed using a long exact sequence: [Hatcher]

. . . Hi(X, Z̃) Hi(Y,Z) Hi(X,Z)

Hi−1(X, Z̃) Hi−1(Y,Z) Hi−1(X,Z) . . .

pi∗

pi−1
∗

H•(X, Z̃) = {Z2, 0,Z2, 0,Z2, 0}

22 = 4 choices of torsion =⇒ SL(2,Z) singlet plus triplet.
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Phases of the (C3/Z3)/(Z̃2) orientifold
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Orientifolding C3/Z3
Orbifolding N = 4 duality

Consider the orientifold action with generators {R, I Ω(−1)FL}:
R : (x, y, z) −→ (ωx, ωy, ωz)

I : (x, y, z) −→ (−x,−y,−z)
with ω = exp(2πi/3).

1

23
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A N = 1 duality

USp(Ñ + 4) SU(Ñ) SU(3) U(1)R Z3

Ai 2
3 − 2

Ñ
1

Bi 1 2
3 + 4

Ñ
−2

(here Ñ ∈ 2Z) is dual to

SO(N − 4) SU(N) SU(3) U(1)R Z3

Ai 2
3 + 2

N 1

Bi 1 2
3 − 4

N −2

in both cases with W = 1
2λεijkTrAiAjBk.

Global anomalies, the moduli spaces, SCIs and the spectrum of

operators match if Ñ = N − 3 . (D3 charge conservation.)
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Superconformal index matching
A very powerful and refined indicator of duality comes from putting the
theory on S3 × R, and computing the index [Romelsberger ’05],
[Kinney, Maldacena, Minwalla, Raju ’05]:

I(t, x, f) =

∫
dgTr (−1)F e−βHtRx2J3fg , (1)

with 2H = {Q,Q†}. Romelsberger gave a procedure for computing the
index from weak coupling quantities. Start with the “letter”:

iT (t, x, g, f) =
(2t2 − t(x+ x−1))χAdj(g)

(1− tx)(1− tx−1)

+

∑
i

(
triχRi

G
(g)χRi

F
(f)− t2−riχ

Ri
G

(g)χ
Ri

F

(f)
)

(1− tx)(1− tx−1)
.

and then take the plethystic exponential:

IT (t, x, f) =

∫
dg exp

[ ∞∑

k=1

1

k
iT (tk, xk, gk, fk)

]
.
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Superconformal index matching
For SO(3)× SU(7)↔ USp(8)× SU(4) we get:

ISO/USp(t, x, f) = 1 + t
2
3

[
χ0,2(f) + χ4,0(f)

]

+ t
4
3

[
2χ0,4(f) + 2χ2,0(f) + χ3,1(f) + 2χ4,2(f) + χ8,0(f)

]

+ t
5
3 (x+ x−1)

[
χ0,2(f) + χ4,0(f)

]

+ t2
[
3χ0,6(f) + χ12,0(f) + χ1,4(f) + 5χ2,2(f) + 3χ3,3(f)

+ 2χ4,1(f) + 3χ4,4(f) + χ5,2(f) + 4χ6,0(f) + χ6,3(f)

+ χ7,1(f) + 2χ8,2(f) + 4
]

+ . . .

We have checked up to order t11/3 for this value of N , higher
orders for other values of N , and to all orders in the large N limit:

A conjecture about elliptic hypergeometric functions

IUSp = ISO
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Duality in the large N limit

The strict N →∞ limit simplifies (too much), as the distinction
between orientifolds enters as a 1/N effect. But some basic checks:

The SCI of the USp and SO theories can be proven to be
equal in this limit.
The holographic duals transform in a sensible way.
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Finite N behavior

For N > 9 the dynamics in the IR “stabilizes”: we always get a
conformal manifold of complex dimension 1 (from SCI, under the
assumption that there are no accidental symmetries).

For N = 9 we get a conformal manifold, with extra marginal
directions (from the SCI).

For N = 7 we can Seiberg dualize the USp theory to an s-confining
description (like Nf = Nc + 1 SQCD). (Prediction for SO side.)

N = 5 has a runaway superpotential on both sides.

N < 5 is in principle also interesting, but notice that at least one
side breaks susy.
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N = 3 (Ñ = 0)

This case is amusing, we have that N = 1 USp(4) SYM theory is
dual to

“SO(−1)” SU(3) SU(3) U(1)R Z3

Ai 2
3 + 2

N 1

Bi 1 2
3 − 4

N −2

where the A field is tachyonic. A realization of the dual Meissner
effect? (Related to [Sugimoto ’12].)
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Generalization to other orbifolds

The proposal generalizes straightforwardly to C3/Zn singularities,
as long as the singularity is isolated (so n ∈ 2Z + 1). Everything
works beautifully in these cases too. [Bianchi,Inverso,Morales,Pacifi
’13], [I.G.-E., Heidenreich, Wrase ’13]

What lies beyond susy orbifolds?
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2 minute intro to toric geometry
Basic survival guide
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Examples of toric spaces

Flat space C3 = (|z1|eiϕ1 , |z2|eiϕ2 , |z3|eiϕ3).
Projective spaces Pn (compact, so not Calabi-Yau).
Weighted projective spaces (compact, so not Calabi-Yau).
The conifold:

∑4
i=1 z

2
i = 0.

Abelian orbifolds of flat space: C3/(Zm × Zn).
Complex cones over the lower del Pezzos (dP0, . . . , dP3).
Lp,q,r.

It is a vast class of geometries. Most familiar geometries in string
theory are either toric or simply related to toric spaces
(hypersurfaces in toric varieties, for example).



Intro C3/Z3 C(dP1) General Conclusions

Toric diagrams
Toric Calabi-Yau n-manifolds can be described by a n− 1 convex
polytope, the toric diagram.

Calabi-Yau Toric diagram

C3

Conifold

C3/(Z2 × Z2)

dP0

dP1
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General case
By a computation in algebraic topology one can see that for a toric
O3/O7 orientifold of a toric CY3 cone, with

k sides
isolated conical singularity of the cone
fixed points of the orientifold only at the conical singularity

H3(X, Z̃) = Z⊕(k−2)2

For example, for CC(dP1) = CR(Y 2,1)

H3
(
Y 2,1/Z2, Z̃

)
= Z2 ⊕ Z2

so there are 22·2 = 16 orientifold types:
1 SL(2,Z) singlet, 3 triplets, 1 sextet.
 10 different weakly coupled limits.

t
z3

z4

z1 z2
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Orientifold phases for dP1

More graphically:

Our task is to map the dots to theories.
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Known orientifolds of dP1

The previously known orientifolds for branes at the dP1 singularity
can be obtained via brane tiling methods
[Franco,Hanany,Krefl,Park,Uranga,Vegh ’07]
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Known orientifolds of dP1

Anomaly and SCI matching tell us that theories IIA and IIB are
dual to each other iff N is odd (and N = Ñ + 2). Furthermore,
partially resolving dP1 → C3/Z3 + C3 allows us to read where
these orientifolds are located in the torsion diagram:

? ? ? ?

II+B II−B II+B II−B

II+A II+A II−A II−A

? ? ? ?

S

(Sign = (−1)N )
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The most general tilings

Let’s take a step back.

We can construct the theory for a brane at a singularity by
T-dualizing and giving a brane tiling instead: a configuration of
NS5, D5 and O5. [. . . , Imamura, Kimura, Yamazaki]. What is the most
general brane tiling for branes at the (orientifolded) dP1 singularity?
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New orientifold phases: heuristic meaning

The new phases can be interpreted as the theory “stuck” (due to
the orientifold) at the infinite coupling point connecting Seiberg

dual brane configuration.
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Some properties of the conformal matter
(Without attempting any careful derivation)

The basic building block in this class of N = 1 dualities is the
theory living on the intersection of 2k NS5 branes on top of an O5
plane. For instance, for k = 2

A

C

B

D



Intro C3/Z3 C(dP1) General Conclusions

Deconfinement
We can deform (a generalization of anti-symmetric
deconfinement [Berkooz ’95], [Pouliot ’95]) the multiple intersection
into something which is (conjecturally) in the same universality class.

The original observation: consider USp(N − 4) with N chiral superfields
Zi in the vector representation. This theory is believed to confine, and be
described at low energies in terms of the meson Zij = ΩabZiaZ

j
b ( of

SU(N)f ), with an effective superpotential [Intriligator, Pouliot ’95]:

W = Pf(Z) . (2)

We can obtain a theory of an unconstrained antisymmetric by
complicating the theory slightly:

T

P Ẑ

Q

USp(N + F − 4)

SU(F ) SU(N)

with superpotential

W = PQẐ + TP 2 (3)
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Brane tiling description of deconfinement

This somewhat involved structure is very naturally generated by
deconfinement in the brane tiling

A

B

A

B
C ′

C
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Generalizing to multiple intersections

This picture is straightforward to generalize to intersections of
multiple NS5 branes:
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qUSp

SU(M + F )

SU(M + 4)

SU(M)

SU(F )T

Z

R

P

Q

A1

A2

W = A1A2Z + PQR+ TQ2Z

SU(M + G)

T̃

Z̃

R̃

P̃
Q̃

Ã1

Ã2

Φ1

Φ2

SU(M + 4)

SU(M)

SU(G)

W = Ã1Ã2Z̃ + Φ1Ã1R̃ + Φ2Ã2R̃ + P̃ Q̃R̃ + T̃ Q̃2Z̃



Intro C3/Z3 C(dP1) General Conclusions

qSO

SU(M + F )

T

Z

R

P

Q

A1

A2

Φ̃1

SU(M + 4)

SU(M)

SU(F )

W = A1A2Z + Φ̃1A1R + PQR + TQ2Z

SU(M + G)

T̃

Z̃

R̃

P̃

Q̃
Ã1

Ã2

Φ2

SU(M + 4)

SU(M)

SU(G)

W = Ã1Ã2Z̃ + Φ2Ã2R̃ + P̃ Q̃R̃ + T̃ Q̃2Z̃
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Two new orientifold phases for dP1
Phase IA
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SU(M + F )

SU(F )

SU(M + 4)

SO(M)

T

Y

PQ

Ai U

Z Bi
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Two new orientifold phases for dP1
Phase IB
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Two new orientifold phases for dP1
Phase IB

SU(M)

USp(M + 4)

SU(M + F )

SU(F )

A2

T

BiZ

A1

P

Q
Y X,U
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The full duality diagram

I+B I−B I−B I+B

II+B II−B II+B II−B

II+A II+A II−A II−A

I+;+
A I−;−A I−;+A I+;−

A

Perfect agreement between SCIs, agrees with partial resolution, etc.
SCI disagrees for non-dual theories.
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All duality phases for dP1

SU(N − 4) SU(N)

Z Ai

Y

Bi, X

W = εijB
iAjY + 1

2εijXA
iZAj

SU(Ñ + 4) SU(Ñ)

Z Ai

Y

Bi, X

W = εijB
iAjY + 1

2εijXA
iZAj

SO(M − 4)SU(M)

Ai[φ]

Y

Bi

O Sp

W = εijA
iBjY

USp(M̃ + 4)SU(M̃)

Ai[φ]

Y

Bi

Sp O

W = εijA
iBjY
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A constructive approach

The discussion so far was not entirely satisfactory: I constructed a
set of theories using orientifolded brane tilings, and then used
consistency conditions (SCI matching, etc) to guess which discrete
RR and NSNS torsion is associated to each theory. It works for
simple examples, but it is a fairly labour intensive process in
practice, so minimally complicated examples like C(dP2) are already
very painful.

We can do much better: in [I.G.-E., Heidenreich ’16] we provide a
(operationally) simple and systematic way of reading the torsion
associated to a given brane tiling.
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Appearance of conformal matter is very general

An easy theorem
For any toric polytope with more than four sides all phases are
non-classical.

A corollary

We were very lucky that we decided to study C3/Z3 first . . .
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A more involved example
For C(dP2), every duality phase includes TO2 matter:

SU(M)SO(M − 4)
Y

Z

B1

A1[φ1]

B2

A2[φ2]

Sp O

Sp O

W = Y (B1 −B2) +A1A2Z

SU(M̃ − 4)USp(M̃)
Y

Z

B1

A1[±1]

B2

A2[±2]

O Sp

O Sp

W = Y (B1 −B2) +A1A2Z

SU(N − 4) SU(N)

A1[φ]

A2

B2

B1

Zi
Sp O

W = A1B1Z1 +A2B2Z2 +B1B2Z3

SU(Ñ + 4) SU(Ñ)

A1[φ1]

A2[φ2]

B2

B1

ZiO Sp

W = A1B1Z1 +A2B2Z2 +B1B2Z3

SU(P − 4) SU(P )

A2

A1

Sp O

Y

ZiX

W = A1Y Z1 +XA2Y Z2

SU(P̃ + 4) SU(P̃ )

A2

A1

O Sp

Y

ZiX

W = A1Y Z1 +XA2Y Z2
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Recapitulation

Our philosophy for finding duals:
1. Build a configuration of branes at singularities.
2. Measure its conserved charges, including torsion.
3. Apply IIB S-duality to the charges.
4. Construct the brane configuration in the same geometry with

the dual charges.

Branes at singularities are somewhat special, in that step 4 can be
done using perturbative ingredients + some universal strongly
coupled blocks.
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Conclusions

We find very strong evidence for the existence of a new (in
N = 1, but closely related to N = 4 Montonen-Olive in spirit)
class of S-dual descriptions for certain interesting N = 1
theories: non-conformal, chiral, . . .
The whole idea works thanks to the existence of a class of
hitherto unknown N = 1 theories for orientifolded singularities,
coming from gauging flavor symmetries of a class of isolated
strongly coupled N = 1 SCFTs.
Our approach is constructive: given a toric singularity we can
read off the physics at all cusps in the associated conformal
manifold.
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Some open questions

M5 brane description? The emerging picture is very
reminiscent of what happens for dualities in class S theories:

The dual descriptions are built by gauging global symmetries of
(N = 1) isolated SCFTs.
The physics is determined by a toric diagram plus discrete data
∼ decorated Riemann surface (via mirror symmetry).
Ongoing work: Generalization to N = 2 theories, and
M -theory uplift. Can we generalize deconfinement to this
case?
Alternatively, any intersection with class Sk?

Implications for strong coupling dynamics? [Sugimoto ’12]
3d dualities from circle reduction.
Dynamics on duality walls.
Can we study N = 0 dualities? [Hook, Torroba ’13]
Global structure of the duality? Extended operators? [Aharony,
Seiberg, Tachikawa ’13]
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Physical interpretation
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Inherited duality

In fact, this situation of having a UV cutoff is familiar from N = 1
inherited S-duality [Argyres, Intriligator, Leigh, Strassler ’99]. Start with
N = 4 SYM, and give a mass to an adjoint. One ends up with the
non-renormalizable superpotential

W = hTr ([φ1, φ2][φ1, φ2]) . (4)

Note that away from h = 0 we require a cut-off. (In this case there is
always a natural UV completion, of course.)

The point h = 0 is believed to be interacting. [Intriligator, Seiberg ’94],
[Intriligator, Wecht ’03].

By a-maximization, we read that the operator O = Tr ([φ1, φ2][φ1, φ2]) is
exactly marginal, so it moves us in the conformal manifold. A
RG-invariant parameterization of this motion is by ξ = hNΛN . So ξ � 1
implies Λ� h−1, i.e. we have a weakly coupled description for a large
range of scales.



Inherited duality

g



Banks-Zaks fixed point
The IR fixed point is typically interacting in our class of
constructions, but for large N we have a weakly interacting
description of the theory close to W = 0, gSU = 0:

USp(Ñ + 4) SU(Ñ) SU(3) U(1)R Z3

Ai 2
3 − 2

Ñ
1

Bi 1 2
3 + 4

Ñ
−2

with W = λ̃
2 Ωab εijk A

i;a
m A

j;b
n Bk;mn , and

(Ñ + 4)(Ñ + 5)

2
· g

2
1∗

8π2
=

18(Ñ − 1)

Ñ
+ (Ñ2 − 1)

g22∗
8π2

,

Ñ(Ñ + 4)
|λ̃∗|2
8π2

=
6(Ñ − 6)

Ñ
+ (Ñ + 2)(Ñ − 1)

g22∗
8π2

.



Duality for the SL(2,Z) triplet

Red is SO(N − 4)× SU(N), blue/purple is
USp(N + 1)× SU(N − 3).



Reading the NSNS torsion from the tiling
A basic fact: a torsion class in H3(X, Z̃) = Z⊕(k−2)2 is generated by
a choice of signs associated to each corner of the toric diagram

〈a〉

〈b〉

〈c〉

〈d〉〈e〉
A

B C

D

E

up to the equivalences

〈a〉+ 〈c〉 = 〈b〉+ 〈e〉 = 〈d〉 (5)



Reading the NSNS torsion from the tiling
On the other hand, at each fixed point of the tiling we have an O5,
with local charges jumping as we cross the NS5:

qUSp

A

B C

D

E

A theorem
Both objects are the same.
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Reading the RR torsion from the tiling
Requires more formalism to state, but the conjecture is also very
clean in the right language:

Fα ≡ [F ] ·
∑

i∈Vα
〈i〉 (mod 2) (6)

where
Fα are the parities associated with the TOk theories.
[F ] is the RR torsion.
Vα encodes a specific subset of O5 local charges.
“·” is a natural geometric product between torsion classes.

Not proven, but lots of supporting evidence.

Intuitively, it encodes the existence of D5 domain walls across
which the RR torsion jumps. [Witten ’98] These should not change the
geometry of the dual tiling.
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