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Outline
• Big Data and the String Landscape. 

 
      what do we mean by “big”? 
        is the landscape big? 
        if yes, how do we deal with it? 
 
                                       broad proposal: literally in any way that makes progress. 
 
                                       technical proposal: algorithmic universality, supervised machine learning, 
                                                        deep reinforcement learning, network science, . . .


• A Big Network of F-theory Geometries. 
       
      exact lower bound on landscape of geometries. 
        form graph representing topological transitions.


• Universality in a Big Network of String Geometries. 
 
      enormous gauge sectors, no weak coupling limits.  (algorithmic universality) 
        rate of E6 appearance. (supervised machine learning) 
                                                               
 
     



Big Data and  
the String Landscape



What do we mean by big?
• In data science: many different usages.  

 
(bigger than previous data,  
or can just barely read into memory and / or process with current tech,  
or too big for current memory / processor and motivating new tech.) 

• Another usage: so big that no conceivable computer will 
ever be able to directly store or process the set.


• A worry?      You can’t do anything with a big set?


• Computer scientists, e.g., make progress with big sets. 
 
Machine-learning / AI in some domains achieve  
   superhuman progress.



AlphaGo Zero

A long-standing goal of artificial intelligence is an algorithm that learns, tabula 
rasa, superhuman proficiency in challenging domains. Recently, AlphaGo became 
the first program to defeat a world champion in the game of Go. The tree search in 
AlphaGo evaluated positions and selected moves using deep neural networks. These 
neural networks were trained by supervised learning from human expert moves, and by 
reinforcement learning from self-play. Here we introduce an algorithm based solely on 
reinforcement learning, without human data, guidance or domain knowledge 
beyond game rules. AlphaGo becomes its own teacher: a neural network is trained to 
predict AlphaGo’s own move selections and also the winner of AlphaGo’s games. This 
neural network improves the strength of the tree search, resulting in higher quality move 
selection and stronger self-play in the next iteration. Starting tabula rasa, our new 
program AlphaGo Zero achieved superhuman performance, winning 100–0 against 
the previously published, champion-defeating AlphaGo.

“Mastering the game of Go without human knowledge.”  
      Silver et al. (Google DeepMind), Nature Oct. 2017.

Point: Go has 10172 states, therefore big, and for the task 
            of playing excellently, superhuman progress achieved tabula rasa.



Is the String Landscape big?
• Previous big landscape:  

      IIB flux vacua. Fix geometry, turn on fluxes. 
      Flux estimates: O(10500)                             O(10272,000)   


• Emerging (?) big landscape: 
      Of topologically distinct geometries. 
      Geometries:   4/3 x 2.96 x 10755                            O(103000)


• Logistical memory realities: 

• Logistical processing realities:    (streaming algorithms?) 
 
 

Ashok, Denef, Douglas . . . Taylor, Wang

JH, Long, Sung Taylor, Wang



How to handle a big landscape?
• Algorithmic universality:    universality derived not from a constructed set,  

but instead detailed knowledge of a concrete construction algorithm. 

• Techniques from data science / AI for strings:  
 
    supervised machine learning.      
            (simple algs, neural nets, “predict”) 
 
    reinforcement learning / genetic algorithms: 
             (DNN + psych, DNN + evolution, agents that learn, move, and “search”) 
                        
    network science:   (“connect”) 
 
     topological data analysis:  (“shape” of data) 
 
    conjecture generation / intelligible AI:    
            (use ML to generate conjectures, prove theorems. “rigorify”.) 

• Vacuum selection: maybe once we fully understand string theory, cosmological dynamics will 
allow us to ignore vast swaths of the landscape. (too hopeful?).

[He] [Krefl, Song] [Ruehle] [Carifio,JH, Krioukov,Nelson]

[Carifio, Cunningham, JH, Krioukov, Long, Nelson] [Taylor, Wang]

 [Carifio,JH, Krioukov,Nelson]

RL: [JH, Ruehle, Nelson] to appear.

Genetic: [Abel, Rizos], [Ruehle]
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A Big Network of  
String Geometries
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• IIb with generalized 7-branes, varying axiodilaton, strong coupling.


• Mathematically described by a Calabi-Yau elliptic fibration over 
base B, where B is the internal space. Use Weierstrass form: 
 
 

• Seven-branes live in the base on the discriminant locus: 
 
 
 


• The network is a network of bases B and Calabi-Yau elliptic 
fibrations over them.

F-theory

y2 = x3 + fx+ g

� = 4f3 + 27g2 = 0



• Want: large ensemble of bases,  and then to understand its 
physics, and ideally universal features (if they exist).


• Strategy:  

1. Start with some “minimal” base geometry.


2. Perform topological transitions to other bases.


3. Satisfy “(4,6)” condition, ensures finite distance  
movement in CY moduli.


• For simplicity: toric threefolds.

Strategy for generating bases



• We’ll refer to a sequence of blowups as a “tree”, 
exceptional ray in fan from blowup as a “leaf”


• Trees over edges = “edge trees”


• Trees over faces = “face trees”


• Points on polytope = “roots”


• Need to classify all trees with h        for all leaves.


• Do so by exhaustively constructing the toric blowups.

Setting some language.

 6



vi

1. Minimal geometry: weak Fano toric 3-fold base, 
corresponding to a triangulated 3d reflexive polytope. 
Defines a Fan with rays      . 
 
 
 
 
 

2. Blowup: along subvarieties to reach a new toric base. 
Combinatorially described by adding new ray     to the 
fan, corresponding to a new exceptional divisor      . 
 
 

The Tree Ensemble
JH, Long, Sung
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• Define the height of a blowup as


• In general, can blow up along


1. Toric curves <—> edges in the triangulated polytope. 
 
 
 
 
 
 

2. Toric points <—> faces (triangles) in the triangulated polytope.

ve =
X

i

aivi

The Tree Ensemble

h =
X

i

ai

Growing a tree above the edge! 
Disclaimer: not a graph theory tree.



• To visualize, it’s easier to project all rays back onto the 
polytope, so ‘growing a tree’ corresponds to subdividing 
edges and faces.

The Tree Ensemble



• Calabi-Yau elliptic fibrations over these bases form a connected 
moduli space, related by topological transitions, under certain 
technical conditions. A necessary one is 

• A sufficient condition to ensure that each Calabi-Yau is connected 
 in moduli space limits the possible blowups in a given  
local patch to a finite set, rendering the ensemble finite. 
 

• The topological transitions give this ensemble a network structure: 
geometries are nodes, and topological transitions are edges. 

JH, Long, Sung

MOVDe(g) < 6 or MOVDe(f) < 4

MOVDe(g) < 6 $ h(ve)  6 for all ve

Hayakawa, Wang

The Tree Ensemble



Classification of Trees



The Edge Network

• A single toric curve, corresponding to an edge in the 
triangulation, admit 82 configurations of blowups. 
 
These configurations form a network         ,  
with 82 nodes and 1386 edges.

NE

NE

• First consider blowup of curves. Toric curves correspond to edges 
 in the triangulation.



A toric point corresponds to a triangle in the triangulation. 
 
 
 
 
 
 
 
 
These configurations form a network         with  
41,873,645 nodes and 100,036,155 edges. 

NF

The Face NetworkNF



• Each “tree” is data representing a local sequence of blowups.


• Form “forest” (threefold base B) from trees by systematically adding 
trees to FRST of a 3d reflexive polytope. Face trees first, then edge.


• Count: polytopes whose FRST’s have the largest number of faces and 
edges dominate the ensemble. 

• Two polytopes dominate: have 108 edges and 72 faces, very large facet.

Forests from Trees

��
1 ��

2large face of large face of



The dominant polytopes:

The Tree Network

Each has 108 toric curves (edges) and 72 toric points (triangles)  
when triangulated. The number of bases in these ensembles is:

Studied network properties:   [Carifio, Cunningham, JH, Krioukov, Long, Nelson] 



• We’ll refer to a sequence of blowups as a “tree”, 
exceptional ray in fan from blowup as a “leaf”


• Trees over edges = “edge trees”


• Trees over faces = “face trees”


• Points on polytope = “roots”


• Need to classify all trees with h        for all leaves.


• Do so by exhaustively constructing the toric blowups.

Recapping the language.

 6



Universality in a Big Network 
of String Geometries

• Non-Higgsable seven-branes.

• Enormous gauge sectors.

• Strong coupling.


Universal:

Semi-common:

(technique: algorithmic universality)

(technique: supervised machine learning)

• E6 on distinguished divisor.


(see upcoming universal results with supervised ML).



• Non-Higgsable seven-brane:    ci > 0 for some i.      (NH7)


• Cannot be Higgsed by a complex structure deformation!


• Non-Higgsable clusters:  network of intersecting NH7.  (NHC).


• Entirely determined by topology of B! 
 
 

Non-Higgsable 7-branes
Some selective progress: Halverson, Grassi, Morrison, Shaneson, Taylor, Wang

f = f̃
Y

i

xai
i

g = g̃
Y

i

xbi
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Y

i

xci
i

ci = min(3ai, 2bi)



A Typical NHC
(a beautiful picture from Taylor-Wang)



• Consider an edge or facet of a polytope, and perform a height > 2 blowup 
on that edge or facet.


• This cuts out a special monomial in f, g, forces type II NH7 on all divisors 
corresponding to points interior to the edge or facet.

Universality of NH7

blow up

type II NH7

All face trees (except for one on ground) have a h > 2 leaf.
All but two edge trees have a h > 2 leaf.

JH, Long, Sung



•      on roots (divisors on facet) are extremely common.


• Theorem: A leaf built on      roots with height ℎ = 1,2,3,4,5,6 
has Kodaira fiber                                                         and 
geometric gauge group                                    respectively. 


• Let       be number of height i leaves above        roots. Then: 
 
 
 
 
with probability 

Universality of Large Gauge Sectors

� .999995

E8, G2, SU(2),�,�
F = II⇤, IV ⇤

ns, I
⇤
0ns, IVns, II,�

Hi E8

E8

E8

• Theorem confirmed by “machine learning”.    
    (fancy technique: linear regression. one of many sklearn defaults.)

JH, Long, Sung



• Sen’s limit: weakly coupled limit in CS moduli space.


• Require having only        or       fibers.


• Does not exist if you have NH7 on rigid divisors with too 
large                                  (higher than     ). 
 
 
(i.e. no seven-branes with exceptional G at weak coupling.) 
 
Q: how often do you have at least one such NH7? 
 
 

Universality of Strong Coupling

In I⇤n

MOVD(f, g) I⇤0

(Sen limit almost never exists). JH, Long, Sung



• Fraction of geometries that admit a Sen limit: <  

• These geometries are inherently strongly-coupled F-theory 
geometries that do not admit a weakly coupled string theory 
description. There is no such limit in moduli space, for fixed base.

A Sen limit is spoiled by:

3⇥ 10�391

JH, Long, Sung

Universality of Strong Coupling
(Sen limit almost never exists).



An E6 Puzzle
• Gauge group result: dominated by  

       (interesting: groups with only self-conjugate reps!)


• Something SM-useful? E6? SU(3)? 
 
- Simple conditions / probabilities for then not known. 
- In random samples, prob ~ 1/1000. 
- When E6 arises in RS, on a distinguished vertex: (1,-1,-1).


• Machine Learning:   
 
Q: Can we train an ML model to accurately predict yes or no for E6 on (1,-1,-1)? 
 
Q: If so, can we learn how it makes its decision? 
          
           in our paper: called conjecture generation. 
           as a CS buzzword: intelligible AI. 
 
Point: by using machine learning to generate conjectures, we may be able to 
take its numerical / empirical results and turn it into rigorous results.

JH, Long, Sung

Carifio, Halverson, Krioukov, Nelson



Training the Model
• Supervised machine learning: given a large number of 

(input,output) pairs, learn to predict output given input, and  
then test on unseen data, see how well the model does.


• Training data: 
 
Input: (max height above v, # of such rays) for all v in polytope. 
Output: E6 on (1,-1,-1) or not. 
 
 
 
 

• sklearn: a very nice free Python package.


• Training sample: 10000 random with no E6, 10000 random with E6.



Evaluating the Model on Unseen Data
• Displayed:  

whisker plots of % 
accuracy with 10-fold 
cross validation.


• Gold bar:  
mean % accuracy.


• Factor analysis: 
only two of the 
variables really matter: 
 
 



Conjecture Generation

• Organizing principle? See 
what it gets right and wrong!  
(using the model trained with 
logistic regression.)


• Observation:  
amax = 5: always no 
amax = 4: usually no. 

• Initial Conjecture: 



Conjecture Refinement and Theorem

• Use info from ML, think a bit, write down conjecture.


• Key point: ML-inspired focus on one particular variable, 
led quickly (< 24 hours) to a theorem once identified. 
 
“Back and forth” process, could be of broad applicability.



Probability and Checks
• Probability computation:  

 
 
 
 
computed using # appropriate edge trees relative theorem. 
 
Result:  
 
 

• Check: with 5 batches, 2 million random samples each.



Concluding Thoughts
Better understanding the landscape likely requires


both formal progress and progress on dealing with its size.


It is big, in the sense that no conceivable computer

will ever be able to store or process it.


Given this, in addition to formal progress, 
universality from construction algorithm and 


techniques from data science seem like

promising directions for understanding it.


I used both to understand a huge ensemble of geometries.

Non-Higgsable seven-branes, large gauge sectors, 


and strong coupling are all universal in the ensemble.


I also showed how machine learning can be used to 

generate a conjecture and subsequently prove a theorem, 


in this case related to the prevalence of E6.




Thank you!
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Extra Slides



• Starting with an elliptically fibered Calabi-Yau X -> B, one can crepantly pass to 
another elliptically fibered Calabi-Yau X’’ -> B’ by a base-change, and pass to a 
minimal Weierstrass model.


• This procedure is


1. Perform a blowup B’ -> B in the base along a subvariety C and perform a 
base change 

2. Perform a change of coordinates and pass to a minimal Weierstrass model  
X’’ -> B’.


• For this procedure to be crepant we need 
 
 
 

• This produces a new elliptic Calabi-Yau X’’ -> B’, with a new base B’ which is a 
blowup of B.

Base transitions

MOVC(f, g) � (4, 6)

MOVC(f, g) � (8, 12)

if C is a curve in B

if C is a point in B

X
0
= X ⇥B B

0
! B

0

Candelas, Diaconescu, Florea, Morrison, Rajesh



• A generic network with            nodes would be completely 
intractable, but this network factorizes into a cartesian product of 
graphs:


The Tree Network

10755

Wolfram

Cartesian product = ⇤



• The tree network            factorizes as 


• Simply put, two geometries in the Cartesian product are adjacent if 
they are related by a single blowup in a single local patch.


The Tree Network

Ntree = N ⇤ 108
E ⇤N ⇤ 72

F

Ntree

By understanding        and       we can learn about          !NE NF Ntree



• Can we generalize beyond toric bases? Observation: the minimal 
geometries we’ve considered (WFTV) can be viewed as patching together 
crepant resolutions of orbifold singularities of       of the form:


1. Isolated singularities.


2.      singularities fibered over curves.


• A natural generalization to move beyond toric threefolds is to consider 
crepant resolutions of other orbifold singularities. What’s left are


1.      singularities fibered over a curve.


2.      singularities fibered over a curve.


• By looking at the Cox ring of the resolutions, we find that building any trees 
above these geometries forces non-Higgsable clusters on rigid divisors 
arising in the crepant resolution, and spoils the existence of a Sen’s limit. 
These geometries produce inherently strongly coupled physics as well!

Beyond toric bases
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JH, Long, Sung
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Degeratu, Yau


