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Lattice Field Theory

A framework for a numerical study of field theories:
Evaluate path integrals numerically by discretizing space-time.

Challenges

Lorenzian path integrals are highly oscillatory and divergent.

A very large number of integration variables:
d-dim. cubic lattice of size L = aN (a is the lattice spacing).
Ntot ≡#(integration variables) = Nd× #(component fields).

Describing fermions.

Resolutions

Wick rotate, iSL → −SE : Oscillations are gone. Convergence.
The action can be interpreted as a classical Boltzmann weight.

Evaluate integrals using a statistical method:
The Metropolis algorithm (Metropolis, A. Rosenbluth, M. Rosenbluth, A. Teller, E. Teller 1953).

In the quadratic case: Integrate fermions. Simulate only bosons.
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The Metropolis Algorithm

The complexity of deterministic algorithms for evaluating integrals is
multiplied by a constant for each added integration variable, O(eαNtot).
Instead use a non-deterministic (Monte-Carlo) algorithm:

Interpret the integrand as a probability density P [xn] = e−S[xn].

Define a stochastic process in the space [xn], x
(1)
n , x

(2)
n , ..., x

(T )
n by:

I Given x
(i)
k consider a random nearby point x̃.

I If changing x
(i)
k → x̃ increases the probability, apply this change.

I If it lowers the probability, apply with probability P̃ /P [x
(i)
n ] and keep

x
(i+1)
k = x

(i)
k otherwise. Repeat for all k = 1...Ntot.

Detailed balance for a measure that equals the probability P [xn].

The measure is obtained in the limit of a long simulation time T .

Average any observables O along the process: 〈O〉 ' 1
T

∑T
i=1O[x

(i)
n ].

Now, each xk should be updated to get the new configuration ⇒ O(Ntot).
Evaluation of P might increase in cost and one might have to increase T .
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The Sign Problem

A subtlety with fermions

Expression after integrating fermions could become negative.
It cannot be interpreted as a weight function e−S̃[xn] = P [xn].

The Metropolis algorithm cannot work, since now we need a
“negative probability” in configuration space.

The sign problem

Define the expression obtained as ±e−S̃ (the sign problem).

Work with the eS̃ so defined.

This has exponential computational cost (the sign problem).
A significant challenge. It was claimed that, for a specific system, the
sign problem is an NP-complete problem (Troyet, Wiese 2004).

Seems quite unlikely that a general solution would ever be found.
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Bosonic Sign Problem

Generalizing the sign problem

Systems with a not necessarily real action have a “phase problem”.

Write e−S =
∣∣e−S∣∣ eiφ.

For φ = π the phase is a negative sign, but problems occur whenever
the phase eiφ oscillates enough.

This is still known as the sign problem.

Motivation for the bosonic sign problem

Why would one consider a complex action?

PT -symmetric theories/String field theory.

Theories, e.g. QCD, with a nonzero chemical potential µ 6= 0.
µ is coupled to terms of the form φ∂0φ.
Such terms acquire i from Wick rotation and become imaginary.

A toy model: Bose gas at finite chemical potential.
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Lefschetz Thimbles

When e−S /∈ R it cannot be used as a measure for the Monte-Carlo.
Resolution: use phase-quenching: redefine e−S → |e−S | as the measure

function: 〈O〉 =
∫
DφO|e−S |eiθ∫
Dφ|e−S |eiθ ≡

〈Oeiθ〉PQ

〈eiθ〉PQ
.

However, growing phase oscillations lead to exponential numerical cost.
This is the sign problem.

Methods towards a resolution: Stochastic quantizaion (complex Langevin);
Analytical continuation; Taylor expansion...

Resolve using Lefschetz Thimbles (Witten 10; Cristoforetti, Di Renzo, Scorzato 12)

Complexify all the d.o.f. The original integration contour is a cycle.

A basis for cycles can be obtained by considering downward gradient
flow of Re(S) from stationary points.

The union of these flows is a smooth manifold: Lefschetz Thimble.

The gradient flow has Im(S) as a conserved quantity.

Efficient integration cycles. Useful for complex actions.
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Implementation of Lefschetz Thimbles on the Lattice

Lefschetz Thimbles are manifolds, but no closed form expression.
Numerical algorithms over thimbles include expensive checks for verifying
that the data is still on the thimble at each step (however (Alexandru et al. 16)).

For one integration variable the conservation of Im(S) defines the thimble.
With more variables the thimble is an Ntot dim real manifold in 2Ntot dim
real space. The requirement Im(S) = C leads to a 2Ntot − 1 dim object.

We don’t care if the integration cycle is a thimble (also (Mori, Kashiwa, Ohnishi 17)).
Strategy: Pick the simplest integration cycle with proper asymptotic
behaviour obeying the equation Im(S) = C at least approximately.

Criteria for simplicity

Explicit expression for the cycle: avoid expensive verifications.

As local as possible: reduces numerical cost.

Use variables that do not lead to expensive Jacobians.

Trade accuracy of Im(S) = C for simplicity if possible.
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The Bose Gas at Finite Chemical Potential

To illustrate the approach consider the Bose gas at finite µ:
A theory of a single complex scalar.
In the continuum the Euclidean action is given by

S =

∫
ddx
(
m2φ∗φ+ ∂αφ

∗∂αφ+ λ(φ∗φ)2 + µ
(
∂0φ

∗φ− ∂0φφ∗
))
.

Discretize in lattice units (a = c = ~ = 1). Impose periodic b. c.:

S =
∑
~x

((
2d+m2

)
φ∗~xφ~x+λ(φ

∗
~xφ~x)

2−
d−1∑
ν=0

(
φ∗~xe
−µδν,0φ~x+ν̂+φ

∗
~x+ν̂e

µδν,0φ~x
))
.

For simplicity and concreteness take d = 1:

S =

N∑
k=1

((
2 +m2

)
φ∗kφk + λ(φ∗kφk)

2 −
(
φ∗ke
−µφk+1 + φ∗k+1e

µφk
))
.
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The Bose Gas in Components

For integrating define φk =
uk+ivk√

2
. Now:

S =

N∑
k=1

((
1 +

m2

2

)(
u2k + v2k

)
+
λ

4

(
u2k + v2k

)2
− coshµ

(
ukuk+1 + vkvk+1

)
− i sinhµ

(
uk+1vk − uk+1vk

))
.

Complexify the components for finding improved integration contours:
uk = xk + iyk, vk = ξk + iζk.
Rescale the fields (α ≡ 1

2+m2 ) and expand y = α sinhµỹ +O(α sinhµ)2:

Im(S) =
sinhµ

λα

∑
k

((
xk(1 + x2k + ξ2k)− α(xk+1 + xk−1)

)
ỹk

+
(
ξk(1 + x2k + ξ2k)− α(ξk+1 + ξk−1)

)
ζ̃k + (xkξk+1 − xk+1ξk)

)
.

Solve Im(S) ' 0 for ỹk,ζ̃k: One linear equation in 2N variables.
Major difference between this expansion and the Taylor expansion method:
Here we only approximate the integration contour. The action is exact.
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Possible Local Contours

0 ỹk = ζ̃k = 0.
The original integration contour – sign problem.

1 ỹk = − ξk+1

1+x2k+ξ
2
k

, ζ̃k =
xk+1

1+x2k+ξ
2
k

.

Only first order in α. Asymptotic behaviour?

2 ỹk = − ξk+1

1+x2k+ξ
2
k+ξ

2
k+1

, ζ̃k =
xk+1

1+x2k+ξ
2
k+x

2
k+1

.

Only first order in α while Im(S) ' 0. Regular asymptotic behaviour.

3 ỹk = − ξk+1

1+x2k+ξ
2
k+κξ

2
k+1

, ζ̃k =
xk+1

1+x2k+ξ
2
k+κx

2
k+1

.

Interpolate between the previous two contours in order to obtain the
best from both. Find best value for κ (0.25).

5 Ansatz: ỹk = −
∑
µνρστφ aµνρστφx

µ
kx
ν
k−1x

ρ
k+1ξ

σ
k ξ
τ
k−1ξ

φ
k+1

1+
∑
µνρστφ bµνρστφx

µ
kx
ν
k−1x

ρ
k+1ξ

σ
k ξ
τ
k−1ξ

φ
k+1

, ζ̃k = ....

Add free parameters for products of powers of all nearest neighbours.
Fit on a small lattice for minimizing Im(S) with 12 parameters:
Linear in the numerator, quadratic in the denominator (9 non-zero).
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Simulation Results

Simulations were run with different lattice size (4,8,16,24,32,40) for a
fixed value of the parameters: m = µ = λ = 1.
The change of variables was implemented in the action ab initio.
Jacobians from the change of variables were included in the simulations.
105 configurations checked in each run.
Error estimation is achieved with the Jackknife method.

The observables evaluated are the action 〈S〉 and
〈
u2k + v2k

〉
.

In the thermodynamical limit 〈S〉N should approach a constant.

All expressions are complex. Observables could have been complex.
They turns out to be real to a high accuracy, as they should.

We also check explicitly the mean phase in the simulation, since the sign
problem is characterized by a vanishing mean phase.
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The Action

Left: The action density as a function of lattice size.
Right: The standard error in the evaluation of the action.
Contours 0,1,2,3,5 are color marked.
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〈
u2k + v2k

〉
Left:

〈
u2k + v2k

〉
as a function of lattice size.

Right: The standard error in the evaluation of
〈
u2k + v2k

〉
.

Contours 0,1,2,3,5 are color marked.
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The Mean Phase

The mean phase as a function of lattice size.
Contours 0,1,2,3,5 are color marked. Points were separated for clarity.
(Note logarithmic scale)
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Summary and Future Directions

Results

A very simple method can address a complicated question.

More results:
I Variants of the contours shown can be used for small αλ.
I Non-local contour: The non-locality is hidden in a single variable.

An efficient computational method with a determinant that can be
evaluated with O(N) instead of O(N4) per swipe.

What’s next

Examine the approach in higher dimensions.

Apply to other systems, including to systems with fermions.

Evaluate the continuum limit.

Apply to PT-symmetric theories and to string field theory.
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THANK YOU
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