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1 Cosmological Constant Problem

Dark Clouds hanging over the two well-established theories

Quantum Field Theory ⇐⇒ Einstein Gravity Theory

We know the recently observed Dark Energy Λ0, which looks like a small

Cosmological Constant (CC):

Present observed CC 10−29gr/cm3 ∼ 10−47GeV4 ≡ Λ0 (1)

We do not mind this tiny CC now, which will be explained after our CC

problem is solved. However, we use it as the scale unit Λ0 of our discussion.
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What is the true problem?
Essential point: multiple mass scales are involved!

There are several dynamical symmetry breakings and they are necessarily

accompanied by vacuum condensation energy:

In particular, we are confident from the success of the Standard Model of

the existence of at least two symmetry breakings:

Higgs Condensation ∼ ( 200GeV )4 ∼ 109GeV4 ∼ 1056Λ0

QCD Chiral Condensation ⟨q̄q⟩4/3 ∼ ( 200MeV )4 ∼ 10−3GeV4 ∼ 1044Λ0

Nevertheless, these seem not contributing to the Cosmological Constant!

It is a Super fine tuning problem:

c : initially prepared CC (> 0)

c− 1056Λ0 : should cancell, but leaving 1 part per 1012; i.e., ∼ 1044Λ0

c− 1056Λ0 − 1044Λ0 : should cancell, but leaving 1 part per 1044; i.e., ∼ Λ0

c− 1056Λ0 − 1044Λ0 ∼ Λ0 : present Dark Energy
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c = initially prepared CC

654321, 098765︸ ︷︷ ︸
12 digits

4321, 0987654321, 0987654321, 0987654321, 0987654321× Λ0 ∼ 1056Λ0

c + VHiggs =

4321, 0987654321, 0987654321, 0987654321, 0987654321︸ ︷︷ ︸
44 digits

×Λ0 ∼ 1044Λ0

c + VHiggs + VQCD = present Dark Energy

1× Λ0 ∼ Λ0

Note that the vacuum energy is almost totally cancelled at each stage of

spontaneous breaking as far as the the relevant energy scale order.
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2 Vacuum Energy ≃ vacuum condensation energy
“Two” origins of Cosmological Constant

Vacuum Energy in QFT: ∑

k,s

1

2
!ωk −

∑

k,s

!Ek (2)

Vacuum Condensation Energy:

V (φc) : potential (3)

They are separately stored in our (or my, at least) memory, but actually, almost the same

object, as we see now.

“Vacuum energy”, which we learn in the beginning of QFT textbook, comes from the

normal ordering of the creation and annihiration opeartors of free particles, and is infinite.

But, once the infinity is renormalized for the massless case, or cancelled between fermions

and bosons, for instance, by Supersymmetry, then the rest vacuum energy density observed

as the deviation from the massless one can be computed finite and in fact be counted in the

vacuum condensation energies V (φc): Consider the chiral quark condensation in QCD. For

simplicity, consider NJL model as a parallel model for the realistic QCD:

LNJL = q̄iγµ∂µq +
G

4

[
(q̄q)2 + (q̄iγ5q)

2
]

→ q̄(iγµ∂µ − σ − iγ5π)q −
1

G
(σ2 + π2)



6

The effective potential V (σ, π) is a function of σ2 + π2 and can be computed at the π = 0

section V (σ) = V (σ,π = 0):

V (σ) =
1

G
σ2 −

∫
d4p

i(2π)4
ln det(/p− σ)

But the second term is nothing but the vacuum energy

−
∫

d4p

i(2π)4
ln det(/p− σ) = −

∑

p,s

!
√

p2 + σ2 + (σ-independent const)

implying that

⟨q̄q⟩ condensation energy ≃ Dirac sea vacuum energy (4)

Moreover, in a Shwinger-Dyson approach to realistic QCD, the quark mass is calculated as

a mass function Σ(p) possessing the support only <∼ ΛQCD, and the condensation energy is

computed finite.
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3 UV Quantum Gravity is irrelevant
CC problem is to be considered in Einstein Gravity theory.

Einstein gravity is a unique Low Energy Effective Theory (5)

Just like Chiral Lagrangian

L = f 2
π tr
(
∂µU

†∂µU
)

U = exp(iπ/fπ), π = πa(x)Ta

is a unique Effective Theory in the low energy region E <∼ fπ, i.e., in the lowest (second) or-

der in the derivative. We know that the fundamental theory describing the strong interaction

is QCD. But, whatever the dynamical theory is beyond E > fπ, the sysytem is described by

the the Nambu-Goldstone (NG) bosons π based on the coset SU(3)L × SU(3)R/SU(3)V ,

and the dynamics is uniquely described by this non-linear sigam model. The non-linearly

realized chiral symmetry uniquely determines the dynamics of the NG bosons, self-coupling

and coupling to other matters in the low energy regime. Moreover, even the quantum

correction in this system can be computed by this Lagrangian in the sense of Weinberg.
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In exactly the same manner, the general coordinate (GC) invariance uniquely determine

the Lagrangian in the lowest (second) order in the derivative; that is, it is the Einstein-

Hilbert action. In this analogy, it is worth noticing

Graviton is a NG tensor boson corresponding to GL(4) → SO(3,1)

Nakanishi-Ojima (1979)

So the Einstein-Hilbert action is exactly analogous to the chiral Lagrangian, and MPl is the

counterpart of the pion decay constant fπ:

Seff =

∫
d4x

√
−g
{
c0M

4
Pl + c1M

2
PlR + c2R

2 + c3RµνR
µν + · · ·

}

gµν = ηµν + hµν/MPl

The CC term (with no derivatives) is consistent with GC invariance and its natural scale is

O(M 4
Pl).

Below the Planck energy scale MPl, the dynamics is uniquely described by the E-H action

plus interaction terms with matter fields. The UV quantum gravity is quite irrelevant to

any problem in much lower energy region than Planck sacale, E ≪ MPl, in particular, to

the CC problem associated with the spontaneous breaking of Electro-weak symmetry and

chiral symmetry.
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4 Scale Invariance solves the problem!

Our world is almost scale invariant: that is, the standard model Lagrangian is scale

invariant except for the Higgs mass term!

If the Higgs mass term comes from the spontaneous breaking of scale invariance at higher

energy scale physics, the total system can be really be scale invariant.

4.1 Classical Scale Invariance

Suppose that our world has no dimensionful parameters.

Suppose that the effective potential V of the total system looks like

V (φ) = V0(Φ) + V1(Φ, h) + V2(Φ, h,ϕ)

↓ ↓ ↓
M ≫ µ ≫ m

and it is scale invariant. Then, classically, it satisfies the scale invariance relation :

∑

i

φi ∂

∂φi
V (φ) = 4V (φ), (6)

so that the vacuum energy vanishes at any stationary point
〈
φi
〉
= φi

0:

V (φ0) = 0.
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Important point is that this holds at every stages of spontaneous symmetry breaking.

In the above potential V , we can retain only V0(Φ) when discussing the physics at scale

M , since h and ϕ are expected to get VEVs of order µ or lower. Then the scale invariance

guarantees V0(Φ0) = 0.

If we discuss the next stage spontaneous breaking at energy scale µ, we should take

V0(Φ) + V1(Φ, h), and can conclude V0(Φ0) + V1(Φ0, h0) = 0.

Similarly, at scale m, we have the potential V0(Φ) + V1(Φ, h) + V2(Φ, h,ϕ), and can

conclude V0(Φ0) + V1(Φ0, h0) + V2(Φ0, h0,ϕ0) = 0.

This miracle is realized since the scale invariance holds at each energy scale of spontaneous

symmetry breaking.

For the help of understanding, we now write a toy model of potentials.

V0(Φ) =
1

2
λ0(Φ

2
1 − ε0Φ

2
0)

2,

in terms of two real scalars Φ0,Φ1, to realize a VEV

⟨Φ0⟩ = M and ⟨Φ1⟩ =
√
ε0M ≡ M1. (7)

ThisM is totally spontaneous and we suppose it be Planck mass giving the Newton coupling
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constant via the scale invariant Einstein-Hilbert term

Seff =

∫
d4x

√
−g
{
c1Φ

2
0R + c2R

2 + c3RµνR
µν + · · ·

}

If GUT stage exists, ε0 may be a constant as small as 10−4 and then Φ1 gives the scalar

field breaking GUT symmetry; e.g., Φ1 : 24 causing SU(5) → SU(3)× SU(2)× U(1).

V1(Φ, h) part causes the electroweak symmetry breaking:

V1(Φ, h) =
1

2
λ1

(
h†h− ε1Φ

2
1

)2
,

with very small parameter ε1 ≃ 10−28. This reproduces the Higgs potential when h is the

Higgs doublet field and ε1Φ2
1 term is replaced by the VEV ε1M 2

1 = µ2/λ1.

V2(Φ, h,ϕ) part causes the chiral symmetry breaking, e.g., SU(2)L×SU(2)R → SU(2)V.

Using the 2 × 2 matrix scalar field ϕ = σ + iτ · π (chiral sigma-model field), we may

similarly write the potential

V2(Φ, h,ϕ) = 1
4λ2

(
tr(ϕ†ϕ)− ε2Φ

2
1

)2
+ Vbreak(Φ, h,ϕ)

with another small parameter ε2 ≃ 10−34. The first term reproduces the linear σ-model

potential invariant under the chiral SU(2)L×SU(2)R transformation ϕ → gLϕgR when ε2Φ2
1

is replaced by the VEV ε2M 2
1 = m2/λ2. The last term Vbreak stands for the chiral symmetry

breaking term which is caused by the explicit quark mass terms appearing as the result of
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tiny Yukawa couplings of u, d quarks, yu, yd, to the Higgs doublet h; e.g.,

Vbreak(Φ, h,ϕ) =
1

2
ε2Φ

2
1 tr
(
ϕ†
(
yuϵh∗ ydh

)
+ h.c.

)

4.2 Quantum Mechanically

However, we have neglected the scale invariance anomaly in quantum field theory. Actu-

ally, if we take account of the renormalization point µ, we have the RGE
(
µ
∂

∂µ
+
∑

a

βa(λ)
∂

∂λa
+
∑

i

γi(λ)φi
∂

∂φi

)
V (φ) = 0

and the dimension counting identity
(
µ
∂

∂µ
+
∑

i

φi
∂

∂φi

)
V (φ) = 4V (φ).

From these we obtain(
∑

i

(1− γi(λ))φi
∂

∂φi
−
∑

a

βa(λ)
∂

∂λa

)
V (φ) = 4V (φ)

This is the correct equation in place of the above naive one:
∑

i

φi
∂

∂φi
V (φ) = 4V (φ)
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This shows the anomalous dimension γi(λ) is not the problem.

βa(λ) terms may be problematic:

−→ 4V (φ0) = −
∑

a

βa(λ)
∂

∂λa
V (φ0)

So, an obvious possibility is that all the coupling constants go to the Infrared Fixed Points:

βa(λIR) = 0. But,

What does this equation really imply?

We argue that the potential value V (φ0) at the stationary point φ = φ0,
dV

dφ

∣∣∣
φ=φ0

= 0,

is zero at any µ, even before reaching the IR limit µ = 0; that is, The vanishing property

of the stationary potential value V (φ) is not injured by the scale-inv anomaly.

The potential value V (φ0) = V0(λ;µ2) at stationary points satisfies the RGE:
(
µ
∂

∂µ
+
∑

a

βa(λ)
∂

∂λa

)
V0(λ;µ

2) = 0

(The first term µ∂/∂µ may be replaced by 4 since V0(λ;µ2) = µ4v(λ).)
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The solution is given by

V0(λ;µ
2) = V (λ̄(t);µ2e2t),

where t = lnµ,

dλ̄a(t)

dt
= βa(λ̄(t)) with λ̄a(t = 0) = λa.

Or, writing V0(λ;µ2) = µ4v(λ), we have

µ4v(λ) = (µ2e2t)2v(λ̄(t)) → v(λ̄(t)) = e−4tv(λ).

We now assume that the theory has an IR fixed point λIR.

Taking the IR limit t → −∞ (µ → 0) gives

v(λIR) = e+∞v(λ).

If v(λIR) is finite, then we must have

v(λ) = 0 → V0(λ;µ
2) = 0.

That is, provided that IR fixed point λIR, as well as the theory on top of that point, exist,

then, the vanishing property of the potential value at stationary point is not injured by the

anomaly!
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5 Example Calculation in λφ4 theory
One-loop RGE-improved tree potential:

V (φ,λ;µ2) =
λ

4!

1

1− 3λ

32π2
ln

1
2λφ

2

µ2

φ4

Or, denoting 4πφ = ϕ, 1
2λφ

2 = αϕ2, λ
32π2

= α,

192π2V =
αϕ4

1− 3α ln(αϕ2/µ2)

1!106 2!106 3!106 4!106
x

"2!1013

"1!1013

1!1013

2!1013

y

図 1: y = αx2/(1− 3α ln(αx)), α = 3/100, µ = 1
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V has two stationary points ϕ2
0 at the origin and ϕ2

1, beyond the Landau pole:

ϕ2
0 = 0 and ϕ2

1 =
µ2

α
exp

(
1

2
+

1

3α

)
→ ∞ e∞ as α → 0 + . (8)

Stationary Values:

V (ϕ0) = 0 and V (ϕ1) = −2

3
ϕ4
1 → −∞2e∞ as α → 0+

According to our general argument, the dimensionless v(λ) ≡ V (ϕ2
0)/µ

4 must vanish or

oterwise divergent in the infrared limit. In this case, IR fixed point is λIR = 0, and v(λ) = 0

for the ϕ1 point, and for the fake ϕ0 point,

lim
µ→0

v(λ) = −2

3
lim

α→0+

1

α2
exp

(
1 +

2

3α

)
→ −∞2e∞. (9)
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6 Gauge Hierarchy
The gauge hierarchy problem has two aspects:

1. Origin: to explain the origin why the hierarchy exist.

2. Stability: to explain its satability against radiative corrections, once it exists anyway.

As for the stability against the radiative correction, it is guaranteed, for instance, by the

SUSY as a well-known example. In the present classically scale invariant theory, there

exist only the logarithmic divergences but no quadratic divergences, so that the stability is

automatic, as was emphasized by Bardeen in 1980’s.

( Note that h†hΦ2
1 × Log term appears always with ε1.)

W. A. Bardeen, “On naturalness in the standard model,” FERMILAB-CONF-95-391-T.

In the above toy model, we have “realized” large gauge hierarchies simply by assuming

tiny parameters ε1 ≃ 10−28, ε2 ≃ 10−34:

V1 =
1

2
λ2

(
h†h− ε1Φ

2
1

)2
and V2 ⊃ 1

4λ2

(
tr(ϕ†ϕ)− ε2Φ

2
1

)2

However, the chiral symmetry breaking scale ε2 is, for instance, determined as follows; if

GUT is assumed, the SU(3) gauge coupling α3 = g23/4π at scale
√
ε0M ≡ M1 evolves a

la RGE, ᾱ3(µ), as the scale µ, and reaches to the O(1) critical coupling αcr
3 ≃ 1 at scale

µ ≃ ΛQCD to break the chiral symmetry, so that
√
ε2M1 ≃ ΛQCD. Thus the relation
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between the GUT scale M1 and QCD scale ΛQCD is fixed by the gauge coupling constant

α3(M1) at scale M1 as

µ
d

dµ
α3(µ) = 2b3 α

2
3(µ) → 1

α3(µ)
=

1

α3(M1)
− b3 ln

µ2

M 2
1

→ ε2 =
Λ2
QCD

M 2
1

= exp
1

b3

( 1

α3(M1)
− 1

αcr
3

)
. (10)

The parameter ε1 determining electroweak breaking scale would also be determined simi-

larly, for instance, if there is a sub-level gauge interactions like Technicolor.

The idea that scale invariance may play an important role for solving the cosmological

constant problem, was also proposed by several authors:

E. Rabinovici, B. Saering and W. A. Bardeen, Phys. Rev. D 36 (1987) 562.

M. Shaposhnikov and D. Zenhausern, Phys. Lett. B 671 (2009) 162

C. Wetterich, Nucl. Phys. B 302 (1988) 668.

However, the former two require exact scale invariance also in quantum theory, and no

one emphasized the miraculous mechanism of cancelling vacuum condensation energies as-

sociated with the multi-step spontaneous symmetry breaking.

The latter two also require the asymptotic safety property for gravity, but the UV property

beyond Planck scale should be irrelevant to the essential point of the cosmological constant

problem as emphasized here.
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7 What should be done next?

7.1 Flat Direction, Or Dimensional Transmutation
We are considering very nontrivial possibilities.

Two stationary points φ0 ≡ (φ0i),
∂V (φ)
∂φi

|φ=φ0
= 0 at least:

φ0 = 0 : trivial point at origin

∃φ0 ̸= 0 : non-trivial point we need, giving the scale of the world (11)

Classically, V (φ) is scale invariant, so

ρφ0 with ∀ρ ∈ R also give degenerate stationary points. −→ Flat Direction

Quantum Mechanically, consider the function

f (ρ) ≡ V (ρφ0), satisfying f (0) = f (1) = 0, f ′(0) = f ′(1) = 0 (12)
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We have two possibilities:

1) Flat direction is kept: f (ρ) ≡ 0. Choosing ρ = 1 is totally spontaneous.

But, the flat direction of V does not necessarily survive the radiative corrections

with classical scale-invariance alone!

We need, e.g.,

1-1. Quantum scale invariance (Shaposhnikov-Zenhausern’s Exact SI prescription):

Englert-Truffin-Gastmans, Nuc. Phys. B177(1976)407.

1-2. Additional Symmetry, like SUSY.

2) Dimensional transmutation: f (ρ) = f ′(ρ) = 0 only at ρ = 0 and ρ = 1 (or ρ = ±1)

That is, the scale is fixed by anomaly, explicit breaking.

I prefer this, and suppose it occurs for QCD. (Higashijima-Miransky’s SD approach)

Any case is Very non-trivial!
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7.2 Other Problems

1. More evidence, or proof, for the claim that

V (φ0) = 0 is not injured by quantum anomally for scale-invariance.

2. Gauge hierarchies; how do those potentials appear possessing tiny εi’s?

3. Global or Local scale invariance?

4. If global, What is ∃Dilaton? → Higgs ?

5. The fate of dilaton? → quantum anomaly would make it massive!

6. How is the present CC value Λ0 explained?

7. How does the inflation occur in this scale invariant scenario?

8. Thermal effects.

9. Construct scale invariant Beyond Standard Model.

10. (Super)Gravity theory with (local or global) scale invariance.


