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Since 2014, we can construct any

string field solution associated with

a given BCFT, as far as it does not

depends on X0 direction.1)

Recently, Ishibashi, Kishimoto and

Takahashi constructed a solution for

constant Fµν flux.2) Then the au-

thors ⊕ I calculated the Aµ profile

of this solution.3)

surprisingly, it is continuous over

the whole torus, despite the

nontrivial configuration of Aµ.
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Today I will talk about a solution for multiply wrapping

D-brane with a constant magnetic flux, a byproduct

of this profile calculation.

Quite recently, I realized that this system is also studied

in the context of string phenomenology, so I thought it’s

a good subject for this conference.
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Plan of this talk:

1. review of constant F12 flux solution

- first quantization → bcc operators

- some simple observations

2. solution for multiply-wrapped magnetized D-brane

- properties

- calculation of the boundary state

3. concluding remarks
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Open string in a constant F12 ̸= 0
We need a bcco connecting Neumann and F12 ̸= 0 b.c.

S =
∫
∂X∂X̃ −AνẊ

ν
∣∣∣
σ=π

X = (X1 + iX2)/
√
2

X̃ = (X1 − iX2)/
√
2

the Dirac quantization condition

F12 = N/(2πR1R2)

λ ≡ arctan2πα′F12

We concentrate on
{X1, X2} :

Xi ∼ Xi +2πRi

Fµν =
(

0 F12
−F12 0

)

(charged)

(neutral)

Ishibashi-Kishimoto-
Takahashi ’15

Abouelsaood-Callan-
Nappi-Yost ’87 Nucl.
Phys. B 280 (1987)
599.
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Mode expansion

X(z, z̄) = x+
∑

i
(
α′
2

)1/2 ∞∑

k=−∞

1

k + λ
(z−k−λ+ z̄−k−λ)αk+λ

X̃(z, z̄) = x̃+
∑

i
(
α′
2

)1/2 ∞∑

k=−∞

1

k − λ
(z−k+λ+z̄−k+λ)α̃k−λ

canonical quantization → zeromode is non-commutative[
x1, x2

]
= 1

F12
= 2πR1R2

N = − 2πα′
tanπλ

Introducing U = eix
1/R1 and V = eix

2/R2,

the algebra is expressed by

UV = V Ue
2πi
N
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We need N ×N matrices to represent zeromode algebra:

U =

⎛

⎜⎜⎜⎜⎝

0 1 . . . 0
... 0 1 ...
... 0 1

1
1 . . . 0

⎞

⎟⎟⎟⎟⎠
, V =

⎛

⎜⎜⎜⎜⎝

1 . . . 0
... ω ...
... ω2

. . .
0 ωN−1

⎞

⎟⎟⎟⎟⎠

Correspondingly there are n degenerate ‘ground states’

of open string vibration

|k⟩ k = 1, ..., N.
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bcc operators
by state-operator mapping, we naturally have N pairs of

bccos {σi∗, σ̄i∗}, which are eigen states of V :

V σk∗ = ω(k−1)σk∗ , Uσk∗ = σk−1
∗

⟨...σ̄l∗(ξ2)...σl∗(ξ1)...⟩ (ξ2 < ξ1) →
{
N for z < ξ2, ξ1 < z

F12 ̸= 0 for ξ2 < z < ξ1

σ̄∗ σ∗
N NF12 ̸= 0

The conformal weight of σ∗ or σ̄∗ is 1
2λ(1− λ).
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through boundary 3pt function, we can derive ope:

σk∗(s)σ̄
l
∗(0) ∼

s−λ(1−λ)

(2π)2R1R2

∑

n1, n2

(sδ)α
′kµkµ

× ω
n1n2
2 +n2lδk−l, n1(mod N)e

−ikµXµ
(0)

σ̄k∗(s)σ
l
∗(0) ∼

| cosπλ|s−λ(1−λ)

(2π)2R1R2

∑

n1, n2

(sδ)α
′ cos2(πλ) kµkµ

× ω
n1n2
2 +n2lδk−l, n1(mod N)e

−ikµXµ
(0)

kµ =
nµ
Rµ

, µ = 1,2

→ some terms have nonzero momentum.
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where

δ ≡ exp(2ψ(1)− ψ(λ)− ψ(1− λ))

with ψ a digamma function

ψ(z) =
Γ′(z)

Γ(z)
.



mapping: BCFT .→ classical solution
Construct a solution to eom of open SFT

QΨ+Ψ ∗Ψ = 0

by defining a regularize bccos

σ = σ∗ ⊗ ei
√
hX0

σ̄ = σ̄∗ ⊗ e−i
√
hX0

(×const.)

so that ope is non-singular: 0 < s

σ̄(s)σ(0) ∼ 1 σ(s)σ̄(0) ∼ g∗/g0

From bccos σ, σ̄ with non-

singular ope, we can make a

classical solution for BCFT∗

cf. g∗/g0 = 1 case:
Kiermaier-Okawa-
Solar ’10 JHEP 1103
(2011) 122
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The EM solution is given by

Ψ := Ψtv −ΣΨtvΣ̄

where

Σ = Qtv

(
1√

1+K
Bσ 1√

1+K

)

Σ̄ = Qtv

(
1√

1+K
Bσ̄ 1√

1+K

)

Qtv... = Q+ [Ψtv, ...]

Ψtv = 1√
1+K

c(1 +K)Bc 1√
1+K

.

This construction is valid for any

time-independent BCFT.

Erler-Maccaferri ’13

See also: Ted’s lecture

z =
2

π
arctan ξ

K =
∫

dz

2πi
T (z)I

B =
∫

dz

2πi
b(z)I

c = c(1)I
σ = σ(1)I
σ̄ = σ̄(1)I

For KBc subalgebra, see
Okawa ’06 JHEP 0604
(2006) 055

Erler ’06 JHEP 0705
(2007) 083
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Summary: property of the solution

energy density= DBI action

S(Ψi) =
√
1+ (2πα′F12)

2

the Ellwood Invariant reproduces coupling to closed string:

OV (Ψi) ∝
δ

δV
SDBI, V = Gµν, Bµν

important: Σks are orthogonal Σ̄iΣj = δij

→naturally multi-brane solution arise:

Ψmulti = Ψtv −Σ1ΨtvΣ̄1 · · ·−ΣNΨtvΣ̄N

for N D-branes, each magnetized with F12 = N
2πR1R2

.
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profile of constant Fµν solution

Ψ =
∑

p⃗

t(p⃗)c1|p⃗⟩+Aν(p)αν−1c1|p⃗⟩+...

We calculated the following profiles

t(x1, x2) ≡
∑

p

t(p⃗)eipµx
µ
,

Aµ(x1, x2) ≡
∑

p

Aµ(p⃗)epµx
µ

→ they are continuous

Here
p⃗ = (p1, p2)

|p⃗⟩ = eip⃗·X(0)|0⟩

Ishibashi-Kishimoto-tm-
Takahashi ’18
(to appear)
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Figure 4: The numerical plots of the vector profile of A2(x) in the case of N = 2 and R1 = R2 = 2
√
3.

Here, we take α′ = 1.

4 Gauge invariant observables for the classical solution

4.1 Calculation of gauge invariant observables

Let us consider the gauge invariant observable (1.5) for the the k-th solution (3.7) with the following
closed string vertex operators at zero momentum:

B(z, z̄) ≡ i(∂X ∂̄X̃ − ∂X̃∂̄X)(z, z̄), (4.1)

G(z, z̄) ≡ (∂X∂̄X̃ + ∂X̃∂̄X)(z, z̄), (4.2)

where X = (X1+ iX2)/
√
2 and X̃ = (X1− iX2)/

√
2. These correspond to the antisymmetric tensor

field B12 and the sum of graviton field G11 +G22 in the spatial directions X1 and X2. Substituting
the k-th solution (3.7) into (1.5) and expressing it in terms of the correlation functions on the infinite
cylinder, the observables can be rewritten as

OV (Ψ
k
0) =

(
1− 1

| cosπλ|

)
OV (Ψtv)

−
∫ ∞

0

dt1√
πt1

∫ ∞

0
ds

∫ ∞

0

dt2√
πt2

e−s−t1−t2

×
〈
V (s+ t1 + i∞, s+ t1 − i∞)∂σk(s)σ̄k(0)

〉

CL

×
〈
c(s+ t1 + i∞)c(s+ t1 − i∞)c(s)

〉

CL

, (4.3)

where L = s+ t1 + t2 . For B(z, z̄) and G(z, z̄), OV (Ψtv) has been calculated as5

OB(Ψtv) = 0, (4.4)

OG(Ψtv) = − α′

2πi
× (2π)2R1R2. (4.5)

5As in [6], if V (z, z̄) is decomposed by the matter primary field Vn(z) as V (z, z̄) =
∑

m,n ζmnVm(z)Vn(z̄), and the

OPE of the primary fields is Vm(z)Vn(z
′) ∼ vmn/(z− z′)2, the observable for the tachyon vacuum solutions is given by

OV (Ψtv) =
1
2πi

∑

m,n

ζmnvmn × mat

〈
0
∣∣0
〉
mat

10

A Numerical plot of A2(x1, x2), with N = 2, R1 = R2 =

2
√
3, α′ = 1.
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(quasi-)periodicity
Aµ profiles are periodic with respect to the space-time;

for i-th solution Ψi,

Ai
µ
(
x1 + 2πR1

N , x2
)
= Ai

µ
(
x1, x2

)

Ai
µ
(
x1, x2 + 2πR2

N

)
= Ai+1

µ
(
x1, x2

)

Actually this holds for all the component fields, i.e.

Ψi
(
x1 + 2πR1

N , x2
)
= Ψi

(
x1, x2

)

Ψi
(
x1, x2 + 2πR2

N

)
= Ψi+1

(
x1, x2

)
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Comment 1) Notice the resemblance to

UΨi = Ψi+1, VΨi = Ψi. (∗)

Since
[
x1, x2

]
= 2πR1R2

N

→ x1 ∼ ∆∂2
(
∆ = 2πR1R2

N

)

U = e
ix1
R1 ∼ e

i2πR2
N ∂2

U implements a translation. (similar holds for V )

(∗) already imply the periodicity.
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Comment 2) A rigorous proof of the (quasi-) periodicity

follows from the form of boundary three point functions,

which is used to calculate profiles:

⟨φ̃(x1)σ(x2)σ(x3)⟩

→ see our paper.
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Comment 3) T-dual of this system wrt X1 is slanted

D1-branes, which exhibits periodicity for X2 clearly.

t-dual

F12 ̸= 0
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Comment 4) if we diagonalized U instead of V , we ob-

tain Ψ̃k s.t.

UΨ̃k = Ψ̃k, V Ψ̃k = Ψ̃k+1

or

Ψ̃k
(
x1 + 2πR1

N , x2
)
= Ψ̃k+1

(
x1, x2

)

Ψ̃k
(
x1, x2 + 2πR2

N

)
= Ψ̃k

(
x1, x2

)

18



ΨiΨ̃i
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tiling/dividing a solution
For some special case, we can trivially map a solution to
another solution of another theory:

(1) by deviding Ψ; if a solution has a symmetry with
respect to space time coordinates, we can divide Ψ to
obtain a solution on a smaller torus etc.

e.g. H
(
OSFTnR1×mR2

) ∣∣∣
periodic

→ H
(
OSFTR1×R2

)

20



(2) tiling: the inverse procedure of (1):

for the case of the flux solution:

(n-unit flux solution)

↔ n time reputation of (1-unit flux solution).

(Remember that, the eom of open SFT is a collection of

infinite number of spacetime DEs)
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wrapped magnetized D-branes
Consider N multi-brane solution: periodic

Ψmulti

(
x1 + 2πR1

N , x2
)
= Ψmulti

(
x1, x2 + 2πR2

N

)

=Ψmulti

(
x1, x2

)

Then divide it to obtain

Ψwrap ∈ H
(
OSFTR′

1×R′
2

)

with R′
i = Ri/N .

We claim that Ψwrap is a wrapped D-brane (N-fold) with

F12 = 1
N

1
2πR′

1R
′
2
.
(
∼ 1

N unit of flux
)
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Ψwrap

Ψmulti

2πR1

2πR2

0

Ψmulti = Ψtv −Σ1ΨtvΣ̄1 · · ·−ΣNΨtvΣ̄N

F12 =
N

2πR1R2
=

1

N

1

2πR′
1R

′
2

23



How do we know the D-brane is multiply-wrapping ?

1) energy

2) excitation around Ψwrap:

e2πR
′
1∂2ψ(i, j) = ψ(i, j)

e2πR
′
2∂1ψ(i, j) = ψ(i+1, j+1)

3) coupling to Gµν and Bµν,

from Ellwood invariants

Excitation around Ψ:
Ψ+Φ

ψij ∼ Σ̄iΦΣj

Erler-Maccaferri ’13

Kishimoto-tm-
Takahashi-Takemoto
’14 PTEP 2015 (2015)
no.3, 033B05

Can we calculate more non-trivial quantity?

→ boundary state
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Comment: wrapping N-times along the other cycle;

(1) diagonalise U , instead of V

(2) take another set of regularized bccos
{
Ξi, Ξ̄i

}N
i=1

UΞi = ωi−1Ξi, VΞi = Ξi+1

and

Ψ̃multi = Ψtv −Ξ1ΨtvΞ
1 · · ·−ΞNΨtvΞ̄

N

(3) divide it to obtain Ψ̃wrap.

Actually, these two are the same classical solution

Ψ̃wrap = Ψwrap,

because Ξj = Wj
i Σ

i with Wj
i a unitary matrix.
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boundary state
Non-SFT derivation: BS for

wrapped magnetized D-branes is de-

rived about 10 years ago. It is not a

trivial calculation.

- winding# & momentum

related

- a consistent phase factor

- delicate coupling to closed

string vertex operators

Di Vecchia-Liccardo-
Marotta-Pezzella-
Pesando ’07
JHEP 0711 (2007) 100

Duo-Russo-Sciuto ’07
JHEP 0712 (2007) 042

Pesando ’09
JHEP 1002 (2010) 064

Can we reproduce this result from open SFT?
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SFT derivation: there are two ways to calculate BS

from a classical solution: KOZ or KMS formalism

KMS formalism

- assume CFTauxiliary sector

- uplift classical solution

- assume the Ellwood conjecture

in this larger theory

Kiermaier-Okawa-
Zwiebach ’08
0810.1737 [hep-th]

Kudrna-Maccaferri-
Schnabl ’12
JHEP 1307 (2013) 033

→
〈
V(h,h)

∣∣B
〉
for any matter (h, h) primary V is calculable.
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Since boundary state is a linear combination of Ishibashi

states, we can read off all the components if the couplings〈
V(h,h)

∣∣B
〉

are known.
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definition/evalulation of the Ellwood invariant:

for Vn,m = exp(kµXµ) with kµ =
(
n1
R1

, n2R2

)
,

⟨n,m|B⟩ =Vn,m(Ψwrap)

= lim
Λ→∞

tr [Vn,m(iΛ,−iΛ)Ψwrap]× tr [Vaux(iΛ,−iΛ)]

n =
(
n1
n2

)
: momentum#, m =

(
m1
m2

)
: winding#,

→ we need the bulk-boundary 3pt function of a closed

string vertex operator and bccos.
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Ψwrap

cV (iΛ)

cV (−iΛ)
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The 3 point function can be derived by the stress-tensor

method; for 0 ≤ s

〈
eikµX

µ
(z, z̄)σ̄l(0)σl(s)

〉

UHP
= C

∣∣∣∣∣
sh

zh(s− z)h

∣∣∣∣∣

2

g

(
−2iys

zz̄ − zs

)

with

g(z) = exp

[∫ z

1
dz

(
α′kk̃′

2(1− z)1−λz
+

α′k′k̃

2(1− z)λz

)]

C =
(2π)2R1R2

| cosπλ|
× C(kµ)× e−iπNn1n2.
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After some calculation, we find that

⟨n, m|B⟩ =
{√

G+2πF × e−iπn1n2N n = Rm

0 otherwise

with

R =

(
0 − 1

N
+1

N 0

)

which is consistent with the previous works:

∗ relation between n and m: ok

∗ absolute value: ok

∗ phase factor: consistent with some of previous works
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(Summary:) a classical solution for multiply-wrapped mag-

netized D-brane on a torus is presented.

We calculated the boundary state from the solution.
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Concluding remarks
- it will be straightforward to consider similar system on

non-rectangular torus or orbifolds etc.

- it will be also interesting to study properties of numer-

ical solutions.

- open SFT might be useful to clarify understanding of

mysterious features of this system.
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