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Since 2014, we can construct any
string field solution associated with
a given BCFT, as far as it does not
depends on X9 direction.?

Recently, Ishibashi, Kishimoto and
Takahashi constructed a solution for
constant Fj, flux.? Then the au-
thors @© I calculated the A, profile
of this solution.®

surprisingly, it is continuous over
the whole torus, despite the
nontrivial configuration of A,.

: -

1) Erler-Maccaferri, '14

2) Ishibashi-Kishimoto-
Takahashi, '17

3) Ishibashi-Kishimoto-
tm-Takahashi 18
(to appear)




Today I will talk about a solution for multiply wrapping
D-brane with a constant magnetic flux, a byproduct
of this profile calculation.

Quite recently, I realized that this system is also studied
in the context of string phenomenology, so I thought it's
a good subject for this conference.



Plan of this talk:

1. review of constant Fjo flux solution
- first quantization — bcc operators
- some simple observations

2. solution for multiply-wrapped magnetized D-brane
- properties
- calculation of the boundary state

3. concluding remarks



Open string in a constant Fyo #= 0

We need a bcco connecting Neumann and Fyj> #= 0 b.cC.

g — / OXOK — A, XY

O—T
X =(X14+ix?)/V2
X =(xt—ix?)/V2

the Dirac quantization condition
Fio = N/(2rR1R>)

A = arctan 27TCMIF12

We concentrate on
{x1, x2}

X'~ X'+ 27R;
_( O Fi2
F = (—F12 0 )

(charged)

(neutral)

Ishibashi-Kishimoto-
Takahashi '15

Abouelsaood-Callan-
Nappi-Yost '87



Mode expansion

_ AR N S i S A
X(z,2)==x i | % —(z z )04\
D) 5
X (2, 7) :5+Zi(%/)1/2 3 ki)\(z—k+/\+g—k+/\)&k_,\
k—=—0o0

canonical quantization — zeromode is non-commutative

CU]' 5132 1 _ 2wrR1Rr __ 2ma’
? — Fio T N — tanwA

Introducing U = ¢i@'/R1 and V = eie°/R2,
the algebra is expressed by
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UV =VUeN



We need to represent zeromode algebra:

orco a0

1 ...
0 W

\ 1 ... 0 \ 0 W1

Correspondingly there are n degenerate ‘ground states’
of open string vibration

k) k=1,.. N.



bcc operators

by state-operator mapping, we naturally have N pairs of

bccos {ot, oL}, which are eigen states of V:

VO'* = k- 1)05, UU>i< = af 1

i l N for z < &, &1 < 2
(---04(£2)...0:(&1)..) (&2 <&1) — {Flg 7 0 for & <z <&

The conformal weight of o« Or g« is %)\(1 — A).



through boundary 3pt function, we can derive ope:

o¥ ()7 (0) ~

7Y (s)al(0) ~

— some terms

s~ A(1-X) S
CreR R, 2 O
X cL’nl?nz-I_nzlfsk—z,nl(mool N)e_ik“Xu(O)
cosTAs AN rcos2(n) ks
(2m)°RiRy
X C‘Jnl?nz+n2l51~c—z,nl(mod N)e_ik“X“(O)

n
Kh=_"E =12
Ry,

have nonzero momentum.



where

6 = exp(2¢(1) — (X)) — (1 —A))

with ¢ a digamma function

_ M=)
P(z) = F(2)




mapping: BCF T +— classical solution

Construct a solution to eom of open SFT
QU 4+ WV x W =0

by defining a regularize bccos
Z\/EX 5_ — 5_* ® e—’L\/EX

O =0xXe (xconst.)

so that ope is non-singular: 0 < s
a(s)a(0) ~1 o(s)a(0) ~ g«/g0

_ i cf. g«/go = 1 case:
From bccos o, o with non- Kiermaier-Okawa-

. Solar '10
singular ope, we can make a
classical solution for BCF T«



The EM solution is given by

Vo= Wy, — S W S
where
= = O (7 Bovier)
2 = Qv ( 1£rKB5 1£FK)
Qty--- = Q + [WtVa ...]
Wy, = ¢1+Kc(1 —I—K)ch.

T his construction is valid for any

time-independent BCFT.

Erler-Maccaferri '13
See also: Ted’s lecture

2
z = —arctan¢
T

d
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For K Bc subalgebra, see
Okawa '06

Erler '06

10



Summary: property of the solution
energy density= DBI action

S(WV;) = \/1 + (27a’F12)?

the Ellwood Invariant reproduces coupling to closed string:

)
Oy (WV;) WSDBL V =GH", B

important: X*s are orthogonal ') = §%
—naturally multi-brane solution arise:

Wiuiti = Wiy — Z1W21 - — Vi y

for N D-branes, each magnetized with Fio = QW}]%\;RQ.
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profile of constant Fj,, solution

Here
p = (p1,p2)

W =3 t(@ec1lp)+Av(p)al je1|p)+ .. 5 = e7X(0)[0)

p
. . Ishibashi-Kishimoto-tm-
We calculated the following profiles . ihashi 115

: (to appear)
t(zt,2?) =) t(FeP,
p

Af(at,2?) =) A(p)en
p
— they are continuous
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A Numerical
23, o = 1.

plot of Ay(zl,z?), with N =2, Ry = Ry =

13



(quasi-)periodicity

AH profiles are periodic with respect to the space-time;
for i-th solution W?,

Ai'u (331 | 27}-\}[21,562) :Ai'u (331,5132)

At (wl,fvz | 27}52) = A;j+1" (561,51?2)

Actually this holds for all the component fields, i.e.

T (wl | 27%%1) xz) NTD (x17 372)

Wi (x1’ 22 4 275\1;32) — it (x1’ mz)



Comment 1) Notice the resemblance to
Uwi=witl oyl =yl

Since [z, 2?] = 27”?\}}%2

— ozl ~ JANG)! (A = QWZ}\}RQ)

-1 ,
1T~ 127 Ry
U—=¢el1 ~ ¢ N 02

U implements a translation. (similar holds for V)

(x) already imply the periodicity.
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Comment 2) A rigorous proof of the (quasi-) periodicity
follows from the form of boundary three point functions,

which is used to calculate profiles:

(#(z1)0(22)0(23))

— SE€E Oour paper.
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Comment 3) T-dual of this system wrt X1 is slanted

D1-branes, which exhibits periodicity for X2 Clearly.

-’
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t-dual

Fio07#0
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<

AN

N
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Comment 4) if we diagonalized U instead of V, we ob-
tain Wk s.t.

UUF =Tk yok = ghtl

or

18
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tiling /dividing a solution

For some special case, we can trivially map a solution to
another solution of another theory:

(1) by deviding W; if a solution has a symmetry with
respect to space time coordinates, we can divide W to
obtain a solution on a smaller torus etc.

NN ON N ENON
XOSONASANXN) o
ONONENEN

((((((((

AXAXA
NAXAX.

((((((((

Y AN ANY AN AY AN

eg. H (OSFTanmeg) — H (OSFTR1><RQ)

periodic
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(2) tiling: the inverse procedure of (1):

for the case of the flux solution:
(n-unit flux solution)

< n time reputation of (1-unit flux solution).

(Remember that, the eom of open SFT is a collection of
infinite number of spacetime DES)

21



wrapped magnetized D-branes

Consider N multi-brane solution: periodic

1 27T R 2\ _ 1 2 27 R
Wmulti (37 | N17 L ) = Wmulti (517 , T° 4 N2)

1 2
=Wmultj (x , T )

Then divide it to obtain
Wwrap € H (OSFTR&XR/Q)

with R; = RZ/N

We claim that Wyap is a wrapped D-brane (N-fold) with

1 1 1 -
F1o = NorR R (N ~ unit of flux)

22



Wmulti
=

27 Ro
:lfwrap
p> £ £ . %
< +—
O 27 R4
Wit = Wiy — Z1WpXq - — IyWip iy

N 1 1
- 2rR1Rp;  N2nR|R,

F1o



How do we know the D-brane is multiply-wrapping ?

1) energy
2) excitation around Wwrap:

2 R102,, (i 7) — 4, (0, 5)
2501, (i) — (141, 5+1)

3) coupling to Gy and By,
from Ellwood invariants

Excitation around WV:
v+ o

Yij ~ Z'pxY
Erler-Maccaferri '13

Kishimoto-tm-
Takahashi-Takemoto
'14

Can we calculate more non-trivial quantity?

— boundary state

24



Comment: wrapping N-times along the other cycle;

(1) diagonalise U, instead of V

(2) take another set of regularized bccos {=!, = ?:1
Ei — wi—lzi VEZ _ Ei_l_]‘
and
\ijulti = Wiy — Elklftvzl cee — EN\UtVEN

(3) divide it to obtain Wyrap.

Actually, these two are the same classical solution

\warap — \varap,
because =7 = WijZ’i with Wg a unitary matrix.

25



boundary state

Non-SFT derivation: BS for
wrapped magnetized D-branes is de-
rived about 10 years ago. It is not a
trivial calculation.

- winding## & momentum
related

- a consistent phase factor

- delicate coupling to closed

string vertex operators

Di Vecchia-Liccardo-
Marotta-Pezzella-
Pesando '07

Duo-Russo-Sciuto '07

Pesando '09

Can we reproduce this result from open SFT7?

26



SFT derivation: there are two ways to calculate BS

from a classical solution: KOZ or KMS formalism

Kiermaier-Okawa-

KMS formalism Zwiebach '08
- assume CF T 4yxiliary S€ctor

. . . Kudrna-Maccaferri-
- uplift classical solution Schnabl 12

- assume the Ellwood conjecture
in this larger theory

— <V<h,h)|B> for any matter (h,h) primary V is calculable.

27



Since boundary state is a linear combination of Ishibashi
states, we can read off all the components if the couplings
<V<h,h)|B> are known.

28



definition/evalulation of the Ellwood invariant:

for Vim = exp(k,X™) with kt = (}%%)

(n, m|B) =Vnm(Wwrap)
= |lim tr [Vn,m(’b/\, —i/\)\UWrap] X tr [Vaux(i/\, —’L/\)]

N— 00

no

n = (n1> . momentum#£, m = (g;) . winding##,

— we need the bulk-boundary 3pt function of a closed
string vertex operator and bccos.

29



cV(iN)e

cV(—i/\)r
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The 3 point function can be derived by the stress-tensor
method; for 0 < s

(X" (2,2)5! (0)ar(s) )

with

g(z) = exp

/jdz<

UHP |2h(s — 2)h

o' kk' | o'k'k

2(1—2)1-22 " 2(1 —2)Xz

C

_ (27)2R1R>

x C (kM) x e~ "mNmnz,

| cos |

2
_C sh g ( —21ys )

)
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After some calculation, we find that

VG F 27F x e~tmmaneN - — Rm
0 otherwise

_(o %
R—(% o>

which is consistent with the previous works:

x relation between n and m: ok

x absolute value: ok

x phase factor: consistent with some of previous works

(n, m|B) = {

with
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(Summary:) a classical solution for multiply-wrapped mag-
netized D-brane on a torus is presented.

We calculated the boundary state from the solution.
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Concluding remarks

- it will be straightforward to consider similar system on
non-rectangular torus or orbifolds etc.

- it will be also interesting to study properties of numer-
iIcal solutions.

- open SFT might be useful to clarify understanding of
mysterious features of this system.
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