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Introduction



When we parameterize a closed string world-sheet using the coordinates
(τ, σ) with 0 ≤ σ ≤ 2π, we do not have an appropriate gauge-fixing
condition to determine the origin of σ.

Even in the light-cone gauge, the gauge redundancy is not completely
fixed because of this issue, but the range of σ is compact so that we can
simply path integrate over all possible choices.

The translation of σ is generated by L0− L̃0, and the integration over all
choices requires the closed string state to be annihilated by L0 − L̃0.

This is the origin of the level-matching condition for the closed string.
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In closed string field theory, this is reflected in the constraints

(L0 − L̃0)Ψ = 0 , (b0 − b̃0)Ψ = 0

imposed on the closed string field Ψ. As can be understood from the
origin of the level-matching condition, it has been difficult to formulate
covariant closed string field theory without imposing these constraints
on the closed string field.
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In the context of the moduli space of Riemann surfaces, propagator sur-
faces for the closed string have two moduli, and the moduli space can be
parameterized as

e−t (L0+L̃0)+iθ (L0−L̃0) ,

where t and θ are the moduli.
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In closed bosonic string field theory, the integration over t is implemented
by the propagator:

b+0
L+
0

= b+0

∫ ∞

0

dt e−t L+
0 with L+

0 = L0 + L̃0 , b+0 = b0 + b̃0 .

On the other hand, the integration over θ yields the operator B given by

B = b−0

∫ 2π

0

dθ

2π
eiθL

−
0 with L−

0 = L0 − L̃0 , b−0 = b0 − b̃0 .

The operator B can be schematically understood as B ∼ δ(b−0 ) δ(L
−
0 ) .

The constraints on the closed string field implement the integration over
this modulus in closed string field theory.
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The appropriate inner product of Ψ1 and Ψ2 satisfying the constraints
can be written as

⟨Ψ1, c
−
0 Ψ2 ⟩

with

c−0 =
1

2
( c0 − c̃0 ) ,

where ⟨A,B ⟩ is the BPZ inner product for a pair of states A and B.

The kinetic term for closed bosonic string field theory is then given by

S = − 1

2
⟨Ψ, c−0 QBΨ ⟩ ,

where QB is the BRST operator.
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The operator B can also be written as

B = −i

∫ 2π

0

dθ

2π

∫
dθ̃ eiθL

−
0 +iθ̃ b−0

using a Grassmann-odd variable θ̃.

This is the form which is natural in the context of the extended BRST
transformation, which maps θ to θ̃.

Witten, arXiv:1209.5461

Since B c−0 B = B, the operator B c−0 is a projector, and the closed
bosonic string field Ψ in the restricted space can be characterized as

B c−0 Ψ = Ψ .
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Recently, there have been important developments in the treatment of
the Ramond sector in superstring field theory, which we consider is re-
lated to formulating closed string field theory without imposing the level-
matching condition.

Complete actions for open superstring field theory including both the
Neveu-Schwarz sector and the Ramond sector were constructed, where
the string field in the Ramond sector is restricted to an appropriate
subspace of the Hilbert space.

Kunitomo and Okawa, arXiv:1508.00366
Erler, Okawa and Takezaki, arXiv:1602.02582
Konopka and Sachs, arXiv:1602.02583

7



The restriction on the string field Ψ of picture −1/2 can be characterized
as

XYΨ = Ψ

with

X =

∫
dζ

∫
dζ̃ e ζG0−ζ̃ β0 = G0 δ(β0) + b0 δ

′(β0)

and

Y = c0

∫
dσ σ eσγ0 = − c0 δ

′(γ0) ,

where G0 is the zero mode of the supercurrent, ζ is Grassmann odd, and
ζ̃ and σ are Grassmann even.

The integration over these Grassmann-even variables should be under-
stood as an algebraic operation analogous to the integration over Grassmann-
odd variables. The extended BRST transformation maps ζ to ζ̃.
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In the context of the supermoduli space of super-Riemann surfaces, prop-
agator strips for the Ramond sector of the open superstring have a
fermionic modulus in addition to the bosonic modulus corresponding to
the length t of the strip. The supermoduli space can be parameterized
as

e tL0+ζG0 ,

where ζ is the fermionic modulus.
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The integration over ζ with the associated ghost insertion yields the
operator X. The restriction

XYΨ = Ψ

is therefore analogous to
B c−0 Ψ = Ψ

for the closed bosonic string field.
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The appropriate inner product of Ψ1 and Ψ2 in the restricted space can
be written as

⟨Ψ1, YΨ2 ⟩ ,

and the kinetic term of open superstring field theory for the Ramond
sector is given by

S = − 1

2
⟨Ψ, Y QBΨ ⟩ .

This is analogous to the kinetic term

S = − 1

2
⟨Ψ, c−0 QBΨ ⟩

for closed bosonic string field theory.
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Another remarkable development in the treatment of the Ramond sector
in superstring field theory is the construction of covariant kinetic terms
by Sen, where no constraints associated with the Ramond sector are
imposed but extra free fields are introduced.

Sen, arXiv:1508.05387

The construction was presented in the context of the Batalin-Vilkovisky
master action for heterotic string field theory or type II superstring field
theory, but the idea can be applied to the construction of a classical
gauge-invariant action for open superstring field theory.
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In this context, the kinetic terms are given by

S =
1

2
⟨ Ψ̃, QBXΨ̃ ⟩+ ⟨ Ψ̃, QBΨ ⟩ ,

where Ψ is a string field of picture −1/2 and Ψ̃ is a string field of picture
−3/2.

The interaction terms do not contain Ψ̃ and the string field Ψ̃ describes
the extra free fields. The string field Ψ describes the interacting fields
and no constraints are imposed on Ψ.

In this approach the operator X can be replaced by a different operator.
For example, the zero mode of the picture-changing operator can be used,
which is convenient when we describe the superconformal ghost sector in
terms of ξ, η, and φ.
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The Ramond sector of Closed bosonic

open superstring field theory string field theory

moduli ( t, ζ ) ( t, θ )

the theory with Ψ satisfying Ψ satisfying

a restriction XYΨ = Ψ Bc−0 Ψ = Ψ

the theory with interacting Ψ

a free string field and free Ψ̃
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This construction indicates that we can formulate closed string field the-
ory without imposing the level-matching condition on the closed string
field if we allow extra free fields.

We claim that this is indeed possible.

The kinetic terms for the Ramond sector of open superstring field theory
in the approach by Sen are

S =
1

2
⟨ Ψ̃, QBXΨ̃ ⟩+ ⟨ Ψ̃, QBΨ ⟩ ,

where Ψ is the string field of picture −1/2 and Ψ̃ is the string field of
picture −3/2.

The interaction terms do not contain Ψ̃ and the string field Ψ̃ describes
the extra free fields. The string field Ψ describes the interacting fields
and no constraints are imposed on Ψ.
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This construction indicates that we can formulate closed string field the-
ory without imposing the level-matching condition on the closed string
field if we allow extra free fields.

We claim that this is indeed possible.

Our kinetic terms for closed bosonic string field theory without the level-
matching condition are given by

S =
1

2
⟨ Ψ̃, QBBΨ̃ ⟩+ ⟨ Ψ̃, QBΨ ⟩ ,

where Ψ is a string field of ghost number 2 and Ψ̃ is a string field of ghost
number 3.

The interaction terms do not contain Ψ̃ and the string field Ψ̃ describes
the extra free fields. The string field Ψ describes the interacting fields
and no constraints are imposed on Ψ.
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Closed string field theory 
with the level-matching condition



The action is given by

S =
1

2
⟨⟨Ψ, QBΨ ⟩⟩+

∞∑

n=3

gn−2

n!
⟨⟨Ψ, [[Ψ,Ψ, · · · ,Ψ︸ ︷︷ ︸

n−1

]] ⟩⟩

=
1

2
⟨⟨Ψ, QBΨ ⟩⟩+ g

3!
⟨⟨Ψ, [[Ψ,Ψ]] ⟩⟩+ g2

4!
⟨⟨Ψ, [[Ψ,Ψ,Ψ]] ⟩⟩+O(g3) ,

where g is the closed string coupling constant and

⟨⟨A1, A2 ⟩⟩ = ⟨A1, c
−
0 A2 ⟩ .
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The ghost number of the n-string product G( [[A1, A2, · · · , An ]] ) is

G( [[A1, A2, · · · , An ]] ) = − 2(n− 2)− 1 +
n∑

i=1

G(Ai) ,

where G(A) is the ghost number of A.

The n-string product is graded-commutative,

[[A1, · · · , Ai+1, Ai, Ai+2, · · · , An ]] = (−1)AiAi+1 [[A1, · · · , An ]] ,

and the inner product ⟨⟨A1, [[A2, · · · , An ]] ⟩⟩ has the following property:

⟨⟨A1, [[A2, · · · , An ]] ⟩⟩ = (−1)A1A2⟨⟨A2, [[A1, · · · , An ]] ⟩⟩ .
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The action is invariant under the gauge transformation

δΛΨ = QBΛ+
∞∑

n=1

gn

n!
[[ Ψ,Ψ, · · · ,Ψ︸ ︷︷ ︸

n

,Λ ]]

= QBΛ+ g [[Ψ,Λ ]] +
g2

2!
[[Ψ,Ψ,Λ ]] +O(g3)

for the gauge parameter Λ satisfying

(L0 − L̃0)Λ = 0 , (b0 − b̃0)Λ = 0

if the multi-string products [[A1, A2, · · · , An ]] satisfy a set of relations
called L∞ relations.

18



The relation we need for gauge invariance at O(g) is

QB [[A1, A2 ]] + [[QBA1, A2 ]] + (−1)A1 [[A1, QBA2 ]] = 0 .

The relation we need for gauge invariance at O(g2) is

QB [[A1, A2, A3 ]] + [[QBA1, A2, A3 ]]

+ (−1)A1 [[A1, QBA2, A3 ]] + (−1)A1+A2 [[A1, A2, QBA3 ]]

+ (−1)A1 [[A1, [[A2, A3 ]] ]] + (−1)A2(1+A1)[[A2, [[A1, A3 ]] ]]

+ (−1)A3(1+A1+A2)[[A3, [[A1, A2 ]] ]] = 0 .
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Closed string field theory 
without the level-matching condition



The action is given by

S =
1

2
⟨ Ψ̃, QBBΨ̃ ⟩+ ⟨ Ψ̃, QBΨ ⟩+

∞∑

n=3

gn−2

n!
⟨Ψ, [ Ψ,Ψ, · · · ,Ψ︸ ︷︷ ︸

n−1

] ⟩

=
1

2
⟨ Ψ̃, QBBΨ̃ ⟩+ ⟨ Ψ̃, QBΨ ⟩+ g

3!
⟨Ψ, [Ψ,Ψ ] ⟩

+
g2

4!
⟨Ψ, [Ψ,Ψ,Ψ ] ⟩+O(g3) .
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G( [A1, A2, · · · , An ] ) = − 2(n− 2) +
n∑

i=1

G(Ai) .

The n-string product is graded-commutative,

[A1, · · · , Ai+1, Ai, Ai+2, · · · , An ] = (−1)AiAi+1 [A1, · · · , An ] ,

and the inner product ⟨A1, [A2, · · · , An ] ⟩ has the following property:

⟨A1, [A2, · · · , An ] ⟩ = (−1)A1A2⟨A2, [A1, · · · , An ] ⟩ .

21



The action is invariant under the gauge transformations given by

δΛΨ = QBΛ+
∞∑

n=1

gn

n!
B [ Ψ,Ψ, · · · ,Ψ︸ ︷︷ ︸

n

,Λ ]

= QBΛ+ g B [Ψ,Λ ] +
g2

2!
B [Ψ,Ψ,Λ ] +O(g3) ,

δΛΨ̃ = −
∞∑

n=1

gn

n!
[ Ψ,Ψ, · · · ,Ψ︸ ︷︷ ︸

n

,Λ ]

= − g [Ψ,Λ ]− g2

2!
[Ψ,Ψ,Λ ] +O(g3) ,

δΛ̃Ψ = 0 ,

δΛ̃Ψ̃ = QBΛ̃ ,

where Λ and Λ̃ are gauge parameters, if the multi-string products satisfy
a set of relations analogous to the L∞ relations.
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The relation we need for gauge invariance at O(g) is

QB [A1, A2 ]− [QBA1, A2 ]− (−1)A1 [A1, QBA2 ] = 0 .

The relation we need for gauge invariance at O(g2) is

QB [A1, A2, A3 ]− [QBA1, A2, A3 ]

− (−1)A1 [A1, QBA2, A3 ]− (−1)A1+A2 [A1, A2, QBA3 ]

− (−1)A1 [A1, B [A2, A3 ] ]− (−1)A2(1+A1)[A2, B [A1, A3 ] ]

− (−1)A3(1+A1+A2)[A3, B [A1, A2 ] ] = 0 .
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Note that the L∞ relation

QB [[A1, A2, A3 ]] + [[QBA1, A2, A3 ]]

+ (−1)A1 [[A1, QBA2, A3 ]] + (−1)A1+A2 [[A1, A2, QBA3 ]]

+ (−1)A1 [[A1, [[A2, A3 ]] ]] + (−1)A2(1+A1)[[A2, [[A1, A3 ]] ]]

+ (−1)A3(1+A1+A2)[[A3, [[A1, A2 ]] ]] = 0

follows from

QB [A1, A2, A3 ]− [QBA1, A2, A3 ]

− (−1)A1 [A1, QBA2, A3 ]− (−1)A1+A2 [A1, A2, QBA3 ]

− (−1)A1 [A1, B [A2, A3 ] ]− (−1)A2(1+A1)[A2, B [A1, A3 ] ]

− (−1)A3(1+A1+A2)[A3, B [A1, A2 ] ] = 0

under the identification

[[A1, A2, · · · , An ]] = B [A1, A2, · · · , An ] .
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The equations of motion are then

QBBΨ̃+QBΨ = 0 ,

QBΨ̃+
∞∑

n=2

gn−1

n!
[ Ψ,Ψ, · · · ,Ψ︸ ︷︷ ︸

n

] = 0 .

We can eliminate Ψ̃ by multiplying the second equation by B and adding
the resulting equation to the first equation. We then obtain

QBΨ+
∞∑

n=2

gn−1

n!
B [ Ψ,Ψ, · · · ,Ψ︸ ︷︷ ︸

n

] = 0 .
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This takes the same form as the equation of motion in the theory with
the level-matching condirion

QBΨ+
∞∑

n=2

gn−1

n!
[[ Ψ,Ψ, · · · ,Ψ︸ ︷︷ ︸

n

]] = 0

under the identification

[[A1, A2, · · · , An ]] = B [A1, A2, · · · , An ] .

We can show the perturbative equivalence of the two equations of motion
with respect to g based on the fact that the cohomology of QB for the
space with the constraints is the same as the cohomology of QB for the
space without the constraints.
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Once we have a solution Ψ to

QBΨ+
∞∑

n=2

gn−1

n!
B [ Ψ,Ψ, · · · ,Ψ︸ ︷︷ ︸

n

] = 0 ,

the equation

QBΨ̃+
∞∑

n=2

gn−1

n!
[ Ψ,Ψ, · · · ,Ψ︸ ︷︷ ︸

n

] = 0

can be regarded as an equation for Ψ̃.

We can show that this equation can be solved without imposing any
conditions on Ψ.
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General solutions can be written as

Ψ̃ = Ψ̃∗ +∆Ψ̃ ,

where Ψ̃∗ and ∆Ψ̃ satisfy, respectively,

QBΨ̃∗ = −
∞∑

n=2

gn−1

n!
[ Ψ,Ψ, · · · ,Ψ︸ ︷︷ ︸

n

] ,

QB∆Ψ̃ = 0 .

The fluctuation ∆Ψ̃ around Ψ̃∗ obeys the free equation of motion, and it
describes the extra free fields.

To summarize, the theory without the level-matching condition is per-
turbatively equivalent to the theory with the level-matching condition
up to extra free fields described by ∆Ψ̃.
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Expansion in terms of
component fields



We consider closed strings in a flat spacetime of 26 dimensions.

When the eigenvalues of L0 and L̃0 for a state carrying spacetime mo-
mentum kµ are −1+ ℓ+α′k2/4 and −1+ ℓ̃+α′k2/4, respectively, we say
that the level of the state is ( ℓ, ℓ̃ ).

The string field Ψ and the gauge parameter Λ can be expanded with
respect to the level as

Ψ =
∞∑

ℓ , ℓ̃=0

Ψ( ℓ , ℓ̃ ) , Λ =
∞∑

ℓ , ℓ̃=0

Λ( ℓ , ℓ̃ ) ,

where Ψ( ℓ , ℓ̃ ), and Λ( ℓ , ℓ̃ ) consist of states of the level ( ℓ, ℓ̃ ).

We are interested in Ψ(1,1) because the graviton is described by this string
field.
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Let us further decompose Ψ(1,1) and Λ(1,1) based on the world-sheet parity
as follows:

Ψ(1,1) = Ψ odd
(1,1) +Ψ even

(1,1) , Λ(1,1) = Λ odd
(1,1) + Λ even

(1,1) .

The string field Ψodd
(1,1) carrying ghost number 2 is expanded as

Ψodd
(1,1) =

∫
d26k

(2π)26

[
B(k) c0c̃0 | 0; k ⟩+

1

2
D(k)

(
c−1c1 − c̃−1c̃1

)
| 0; k ⟩

+ Aµ(k)
(
αµ
−1c

−
0 c1 + α̃µ

−1c
−
0 c̃1

)
| 0; k ⟩

+ Eµ(k)
(
αµ
−1c

+
0 c1 − α̃µ

−1c
+
0 c̃1

)
| 0; k ⟩

+
1

4
Gµν(k)

(
αµ
−1α̃

ν
−1 + αν

−1α̃
µ
−1

)
c1c̃1 | 0; k ⟩

]
,

where B(k), D(k), Aµ(k), Eµ(k), and Gµν(k) are five component fields.
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In this expansion, c0c̃0 | 0; k ⟩ and
(
αµ
−1c

−
0 c1 + α̃µ

−1c
−
0 c̃1

)
| 0; k ⟩ are not an-

nihilated by b−0 . Therefore, the corresponding component fields B(k) and
Aµ(k) are absent in the theory with the level-matching condition.

On the other hand, the component fields D(k), Eµ(k), and Gµν(k) exist
in closed string field theory with the level-matching condition and the
graviton and the dilaton are described by these fields.

The equation

QBΨ+
∞∑

n=2

gn−1

n!
B [ Ψ,Ψ, · · · ,Ψ︸ ︷︷ ︸

n

] = 0 ,

is expanded at this level as follows:
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α′k2

4
D(k)− 2B(k)−

√
α′

2
kµEµ(k) = JD(k) ,

1

2

√
α′

2
kµD(k)− Aµ(k) + Eµ(k) +

1

2

√
α′

2
kνG

µν(k) = J µ
E (k) ,

1

4

√
α′

2
kµEν(k) +

1

4

√
α′

2
kνEµ(k) +

α′k2

16
Gµν(k) = J µν

G (k) ,

2B(k)−
√

α′

2
kµA

µ(k) = 0 ,
√

α′

2
kµB(k)− α′k2

4
Aµ(k) = 0 ,

kµAν(k)− kνAµ(k) = 0 ,

where the source terms JD(k), J µ
E (k), and J µν

G (k) are from the interac-
tion terms.
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The gauge parameter Λ odd
(1,1) of ghost number 1 is expanded as

Λ odd
(1,1) =

∫
d26k

(2π)26

[
χ(k) c−0 | 0; k ⟩ − 1

2
ξµ(k)

(
αµ
−1c1 − α̃µ

−1c̃1
)
| 0; k ⟩

]
,

where χ(k) and ξµ(k) are two component fields.

The field ξµ(k) also exists in the theory with the level-matching condition,
and it corresponds to the gauge parameter for the general coordinate
transformation.

The field χ(k) is a new component field which appears in the theory
without the level-matching condition.
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The gauge transformation relevant for Ψodd
(1,1) is δΛΨ

odd
(1,1) = QBΛodd

(1,1) , and
it is expanded in terms of component fields as

δΛB(k) = − α′k2

4
χ(k) ,

δΛD(k) = 2χ(k) +

√
α′

2
kµξµ(k) ,

δΛAµ(k) = −
√

α′

2
kµχ(k) ,

δΛEµ(k) = − α′k2

4
ξµ(k) ,

δΛGµν(k) =

√
α′

2
kµξν(k) +

√
α′

2
kνξµ(k) .
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The corresponding equations of motion in the theory with the level-
matching condition are given by

α′k2

4
D(k)−

√
α′

2
kµEµ(k) = JD(k) ,

1

2

√
α′

2
kµD(k) + Eµ(k) +

1

2

√
α′

2
kνG

µν(k) = J µ
E (k) ,

1

4

√
α′

2
kµEν(k) +

1

4

√
α′

2
kνEµ(k) +

α′k2

16
Gµν(k) = J µν

G (k) ,

which are obtained from the equations in the theory without the level-
matching condition by simply setting B(k) = 0 and Aµ(k) = 0.
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It is easy to see the equivalence of the equations in the theory without the
level-matching condition to the equations in the theory with the level-
matching condition up to gauge transformations.

The equation
kµAν(k)− kνAµ(k) = 0

means that the field strength of Aµ(k) vanishes. Therefore, we can bring
any solution to the form where

Aµ(k) = 0

by the gauge transformation using the gauge parameter χ(k). In this
gauge, the component field B(k) also vanishes:

B(k) = 0 .

This establishes the equivalence under the gauge transformation.
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Note that we can have solutions which cannot be brought to the form
where Aµ(k) = 0 by the gauge transformation if we compactify the tar-
get space on a torus. In this case the theory without the level-matching
condition can be inequivalent to the theory with the level-matching con-
dition nonperturbatively.

We expect that there will be a lot of such nonperturbative solutions for
generic backgrounds. It will be also possible that there are similar non-
perturbative solutions in superstring field theory without any restrictions
for the Ramond sector and consequently the theory can be inequivalent
to superstring field theory with the restricion for the Ramond sector. It
would be interesting to explore more about such nonperturbative differ-
ences.
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Conclusions and discussion



We constructed closed bosonic string field theory without imposing the
constraints

(L0 − L̃0)Ψ = 0 , (b0 − b̃0)Ψ = 0

on the closed string field Ψ. This is the first implementation of general co-
variance in the context of string theory without using the level-matching
condition.

Even in closed string field theory with the level-matching condition,
the general covariance is not implemented by simply replacing ordinary
derivatives with covariant derivatives, but in closed string field theory
without the level-matching condition its implementation is more exotic.
This is why the extra free fields from Ψ̃ do not couple to gravity despite
the fact that they have kinetic terms.
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In the formulations of open superstring field theory based on the restric-
tion for the Ramond sector the operator X plays a distinctive role, and
it seems difficult to replace it with a different operator.

On the other hand, the operator X does not have a special meaning in
the approach by Sen and in fact the zero mode of the picture-changing
operator was used instead of X.

In closed bosonic string field theory with the level-matching condition,
the operator B plays a distinctive role, and it has been difficult to replace
it with a different operator.

On the other hand, the operator B does not have a special meaning in
closed bosonic string field theory without the level-matching condition,
and we expect that it is possible to replace it with a different operator.
While we have not understood the reason clearly, somehow use of extra
free string fields seems to make string field theory more flexible.
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This flexibility might play a role when we try to extract closed strings
from open strings in the context of the AdS/CFT correspondence. For
example, the world-sheet of closed strings is constructed from the world-
sheet of open strings via unconventional gluing in the hexagon approach,
and the representation of closed strings without using the level-matching
condition might be useful.

The approach by Sen to the covariant treatment of the Ramond sector
using extra free fields has opened a new direction of research in string
field theory, and we believe that we have revealed that the approach has
a counterpart which is related to the level-matching condition on closed
string fields.

Some aspects of the new approach is still mysterious, and we hope that
our results will help demystify this interesting new direction of research
in string field theory.

40




