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Introduction

I In AdS/CFT correspondence the radial coordinate in the
bulk is identified with the energy scale in the dual field
theory.

I So moving in the radial direction can be thougt of RG flow
in the dual field theory.

I Usually in the field theory side we deform the fixed point
(UV) hamiltonian by some relevant perturbation which
induces an RG flow and the flow approaches to another
(IR) fixed point.

I The irreversibility of the RG flow in the field theory is
encoded in the c-theorem.
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Introduction

I What happens in the gravity side is that in the UV we
have AdS space as dual geometry and then it changes to
some other geometry during the RG flow and then in the
IR it again approaches to another AdS space.

I Holographic c-functions have been constructed before as
radial evolution of a locally constructed function of the
metric.

I It monotonically decreases along the RG flow and becomes
equal to the central charge of the corresponding dual CFT
at the fixed points.

I But there is another way to construct such a holographic
c-function using the causal horizon (S. Banerjee, ’15).

I The second law of causal horizon thermodynamics (T.
Jacobson and R. Parentani, ’03) plays a crucial role there.
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Introduction

I Brief overview of the prescription

Figure: 1 Causal horizon Σ of the boundary point P in pure AdS
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Figure: 2 Deformed causal horizon Σ̄ of the boundary point p in
deformed AdS.
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Introduction

I Now suppose instead of deforming the Hamiltonian by
some relevant perturbation we take some thermal state of
the CFT. The scale invariance (of this state) is clearly
broken due to the finite temperature.

I Different physical quantities starts showing interesting
scaling behavior as a function of (RT ), R→ system size
and T → temperature. We call this as RG flow.

I In the bulk we have a black brane because the thermal
state is dual to a black brane in the bulk.

I Our aim is to construct and study the behavior of a
function which monotonically decreases along the RG from
its UV value to IR value.
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Calculation and Results

I We focus on four dimensional field theories only.

I The metric of the 5 dimensional black brane is

ds2 =
1

z2

(
−(1− z4)dt2 +

dz2

1− z4
+ d~x2

)
(1)

where we have set the radius of curvature to 1.

I Let us take a boundary point p with coordinates
z = xµ = 0. The past(future) causal horizon of this point is
nothing but the future(past) bulk light cone. So our job is
to construct the ingoing null geodesics originating from the
point p because the congruence of the ingoing null
geodesics constitute the future bulk light cone.
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Calculation and Results

I Introducing ingoing Eddington-Finkelstein coordinate

v = t− z∗, z∗ = 1
2 tan−1 z + 1

4 log
(
1+z
1−z

)
the metric (1) can

be written as

ds2 =
1

z2
[
−(1− z4)dv2 − 2dvdz + d~x2

]
(2)

we are working with the Eddington-Finkelstein coordinates
because we don’t want to face the coordinate singularity
z=1.

I Since we will be working with null geodesics, instead of (2)
we can work with the following conformally transformed
metric

ds̃2 = −(1− z4)dv2 − 2dvdz + d~x2 (3)
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Figure: 3 Penrose diagram of the maximally extended AdS5 black
brane.
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Calculation and Results

I Let λ be the affine parameter along a null geodesic in the
conformally transformed metric ds̃2. The null geodesics
satisfy the equation

g̃AB
dx

dλ

A dx

dλ

B

= 0 (4)

I The metric is independent of v and xi’s. So we have four
conserved charges

− (1− z4)dv
dλ

= −E +
dz

dλ
(5)

dxi

dλ
= −pi (6)

E and ~p are the conserved charges along the null geodesic.
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Calculation and Results

I Our convention is that the affine parameter λ is increasing
as we move away from the boundary point z = 0.

I We will be working with the future bulk light-cone and
with our convention for the affine parameter we have
dt
dλ ≥ 0 and hence E ≥ 0.

I Using equations (4), (5) and (6) we get(
dz

dλ

)2

= E2 − p2(1− z4) (7)

I So the null geodesics which can reach the boundary point
must satisfy E2 − p2 ≥ 0.
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I We can parametrize the conserved charges as

E = cosh η (8)

pi = sinh η n̂i (9)

where 0 < η <∞ and n̂i = (sin θ cosφ, sin θ sinφ, cos θ).

I Solving these equations with boundary conditions
z(0, η) = v(0, η) = xi(0, η, n̂i) = 0 we get

z(λ, η) =

√
1

sinh η

1− cn(2λ
√

sinh η, 1/
√

2)

1 + cn(2λ
√

sinh η, 1/
√

2)

v(λ, η) =

∫ λ

0
dλ′F (λ′, η)

xi(λ, η, n̂i) = −λ sinh η n̂i (10)

13 / 27



Generalized (Holographic) c-Theorem and Entanglement Negativity

Calculation and Results

F (λ, η) = sinh2 η
(1 + cn)2 cosh η −

√
2
√

1 + cn2(1 + cn)

(1 + cn)2 sinh2 η − (1− cn)2

where cn is one of the Jacobian elliptic function.

I Equations (10) are the parametric form of a null
hypersurface which is the bulk future light cone or the past
causal horizon of the point p(xµ = z = 0).

I (λ, η, θ, φ) are the intrinsic coordinates on this null
hypersurface and (η, θ, φ) are the comoving coordinates of a
null geodesic parametrised by affine parameter λ.

I Next job is to compute the induced metric on the null
hypersurface (10).

14 / 27



Generalized (Holographic) c-Theorem and Entanglement Negativity

Calculation and Results

I Induced metric on the null hypersurface

ds2ind =
1

z2

[
−(1− z4)

(
∂v

∂η

)2

− 2
∂v

∂η

∂z

∂η
+ λ2 cosh2 η

]
dη2

+
1

z2
λ2 sinh2 η dΩ2

2 (11)

(11) is the metric on λ = constant space-like slice of the
causal horizon parametrized by the coordinates (η, n̂i).

I The volume form can be written as

dVind = c(λ, η)dV 3
H

c(λ, η) =
λ2

z3

√
−(1− z4)

(
∂v

∂η

)2

− 2
∂v

∂η

∂z

∂η
+ λ2 cosh2 η

(12)
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Calculation and Results

I dV 3
H is the volume form on a unit three dimensional

hyperbolic space given by

ds2H3 = dη2 + sinh2 ηdΩ2
2

dV 3
H = sinh2 η sin θdηdθdφ

I Now one can check that

∂

∂λ
c(λ, η) ≤ 0

I The Bekenstein-hawking entropy density associated to the
volume element dVind

dSBH =
L3

4GN
c(λ, η)dV 3

H
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So our c-function is

cη(λ) =
L3

4GN
c(λ, η) (13)

sinhΗ=0.2

sinhΗ=0.5sinhΗ=2
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Figure: 4 We have plotted the c-function for three different values of η.
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Physical Interpretation

I The boundary CFT is in a thermal state with a finite
temperature. So it is effectively massive with a gap set by
the temperature.

I There is a finite correlation length of the order of inverse of
temperature. So in the deep IR correlation function goes to
zero.

I The IR behaviour of the c-function we have constructed
shows the same behavior that means it knows about the
presence of this effective mass gap.

I It monotonically decreases from the central charge of
UV-CFT, aUV to zero at the curvature singularity.
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Physical Interpretation

I So we can say that the causal horizon c-function faithfully
quantifies the amount of pure quantum correlation or the
effective number of quantum degrees of freedom that exists
at different scales in the given thermal state.

I The holograpic c-function that we have constructed can’t
be identified with the entanglement entropy of the
boundary field theory.

I First of all the space-like slices are not in general the
extremal surfaces in the bulk. (Ryu and Takayanagi, ’06).

I The finite temperature renormalized entanglement entropy
has been calculated for a ball of radius R in R3. (Liu and
Mezei, ’13)
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Physical Interpretation

I In the UV region R→ 0, SREE → aUV . This matches with
our c-function in the UV region.

I But in the IR region R→∞, SREE 6= 0 and dominated by
the thermal entropy. This does not match with our result.

I Entanglement entropy is not an entanglement measure in a
mixed state. At finite temperature it becomes thermal
entropy + quantum corrections.

I Thus it fails to capture the pure quantum part which
should go to zero.

I Entanglement negativity - an entanglement measure in a
mixed state.
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Physical Interpretation

I ρ is the density matrix describing the composite system
A ∪B with Hilbert space HA

⊗
HB.

I Partial transpose of ρ w.r.t A →

< iAjB|ρTA |kAlB >=< kAjB|ρ|iAlB > (14)
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Physical Interpretation

I If a density matrix is separable/unentangled, i.e ,

ρ =
∑
i

piρ
i
A

⊗
ρiB (15)

where pi ≥ 0 and
∑

i pi = 1 → ρTA > 0

I In general ρTA is not positive semidefinite.

I Let {λi < 0} denote the negative eigenvalues of ρTA .

I Entanglement negativity → N(ρ) =
∑

i |λi|

I Logarithmic entanglement negativity →
E(ρ) = ln(1 + 2N(ρ))

I If ρ is unentangled → ρTA > 0 → N(ρ) = 0 → E(ρ) = 0
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Physical Interpretation

I Logarithmic entanglement negativity at finite temperature
in a two dimensional CFT was computed by Calabrese,
Cardy and Tonni in 2015.

I Take an infinite line at temperature T = β−1. The
entanglement negativity of a single interval of length L is
given by

E =
c

2
ln

[
β

πa
sinh

(
πL

β

)]
−πcL

2β
+f(e−2πL/β)+2 ln c 1

2
(16)

Here a is short distance cut-off, c is the central charge of
the CFT, f(x) is a universal scaling function which deends
on the full operator content of the CFT such that f(1)=0
and f(0)=const.
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Physical Interpretation

I The renormalized negativity

ER = L
d

dL

∣∣∣
β
E (17)

I UV limit : β >> L

ER(UV ) =
c

2

I IR limit : a << β << L

ER(IR) = 0 (18)

I Question - Does it satisfy the monotonicity condition
T d
dTER ≤ 0?.
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Physical Interpretation

I In 4d we have to compute the logarithmic negativity for a
ball of radius R in a thermal state at temperature T - UV
limit is finite. Does it go to zero in the IR limit?

I If negativity becomes independent of the size of the ball in
the high temperature limit, then IR limit is zero.

I Reasonable to expect - if there is a finite correlation length
of order β.

I Thus we can infer that, causal horizon entropy density in
the bulk ⇒ there exist a monotonic function in the field
theory, which is most likely an entanglement measure.
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Physical Interpretation

I There is another aspect of this problem. If we think that
the space-time is built of quantum entanglement (M. Van
Raamsdonk, ’10) then we can interpret the c-function as an
effective bulk measure of the quantum correlation between
the field theory degrees of freedom at different energy
scales.

I Behavior of our c-function correlates the two facts :
Loss of quantum correlation/entanglement in the IR field
theory ⇔ The end of geometry which in this case is the
formation of the curvature singularity behind the horizon.
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Physical Interpretation

I The holographic c-function is affected by things behind the
horizon - Corresponding boundary c-function knows
something behind the horizon.

I If entanglement negativity satisfies the monotonicity
condition then this function will have some information
about the interior.

27 / 27


	Introduction
	Calculation and Results
	Physical Interpretation

