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Plan

Discuss the construction of closed superstring field theory having a non-polynomial action by exploring

the hyperbolic geometry of Riemann surfaces and the symplectic geometry of the moduli space.

At the end, I would like to ask you whether this construction hints towards the possibility of a cubic closed

string field theory.

Based on

arXiv:1708.04977, arXiv:1706.07366; Seyed Faroogh Moosavian, R.P.

To appear; R.P.
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String Field Theory

String field theory is a refined definition of string theory, formulated in the language of QFT.

It generates the perturbative definition of the theory starting from an action. (Witten, Zwiebach)

SFT knows how to deal with the infrared divergences, using standard QFT techniques. (RP, Rudra, Sen)

Scattering amplitudes in SFT, computed using the appropriate contour prescription, is unitary. (RP, Sen)

Since SFT is based on an action, it may open the door towards the nonperturbative regime of string theory.

(Schnabl; Yang, Zwiebach)
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The String Fields

The basic degrees of freedom in SFT are the string fields.

We can think of string fields as an arbitrary linear superpositions of the basis states of world-sheet CFT:

|Ψ〉 =
∑

s

|Φs〉ψs

{|Φs〉}: basis states for the Hilbert space of worldsheet CFT ψs : target space fields

The string field |Ψ〉 must satisfy an appropriate reality condition and must be annihilated by (b0 − b̄0) and

(L0 − L̄0).
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The Quantum BV Master Action

Two kinds of string fields enter into the Batalin-Vilokvisky (BV) master action for closed superstring field theory:

I |Ψ〉: consists of NS states with picture number−1 and the R states with picture number− 1
2

.

I |Ψ̃〉: consists of NS states with picture number−1 and the R states with picture number− 3
2

.

The covariant action satisfying the quantum BV master equation (Sen):

S = g
−2
s

−1

2
〈Ψ̃|c−

0
QBG|Ψ̃〉+ 〈Ψ̃|c−

0
QB|Ψ〉+

(∞,∞)∑
(n, h)=(1, 0)

g
n+2h

s

n!
{Ψn}h


On the NS states, the operatorG acts as an identity operator, and on the R states as a PCO integrated over a

cycle enclosing the puncture where the state is inserted:
∮

dz
z
χ(z)
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The String Vertices

Denote the h loop off-shell superstring measure for m number of NS states and n number of R states as

Ωh,n,m
2Q (· · · ).

{· · · }h =

∫
Vh,m,n

Ωh,n,m
2Q (· · · ) Q = 3h − 3 + n + m

The string vertexVh,m,n is a set of genus h Riemann surfaces with m NS and n R punctures, that does

not include any degenerate Riemann surfaces. Each surface inVh,m,n must be equipped with a choice of

analytic local coordinates defined up to a constant phase around its punctures and a distribution of

2h− 2 + qNSm + qRn number of PCOs.

I The assignment of local coordinates must be independent of the labeling of the punctures

I The PCO distribution on each surface must avoid the occurrence of spurious poles.

I The PCO distribution should be invariant under the action of the mapping class group on the world-sheet.

I The PCO distribution should be invariant under the permutation of the punctures (NS and R separately).
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The Geometric Identity

The BV master equation imposes a stringent consistency condition on the string vertices. (Zwiebach, Sen)

String vertexVh,m,n together with the string Feynman diagrams F obtained by the plumbing fixture gluing of a set

of string diagrams that belong to another string vertices must generate a single cover of the compactified moduli

spaceMh,m+n (Zwiebach):

Mh,m+n = Vh,m,n
⋃

F
1
h,m,n

⋃
· · ·
⋃

F
Q
h,m,n

F
Q
h,m,n : String diagram with Q gluing sites.

This is possible only if the local coordinates and the PCO distribution on the string diagrams that belong to the

boundary of string string vertices match with that on the glued surface.
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The Cell Decomposition of the Moduli Space

vertex
s-channelt-channel

u-channel

String vertices provide a cell decomposition of the moduli space and integrating the off-shell string measure over

each cell is the contribution to the string amplitude from a specific Feynman diagram.

Constructing closed superstring field theory reduces to finding a suitable decomposition of the moduli

spaces of closed Riemann surfaces with a choice of local coordinates and a choice of PCO distribution.
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The Minimal Area Metric

For closed bosonic SFT, the complete set of string vertices can be constructed by using the local coordinates

induced from the metric of least possible area under the condition that lengths of all the nontrivial closed curves on

the surface be longer than or equal to 2π. (Zwiebach)

Unfortunately, the current understanding of the Riemann surfaces with minimal area metrics is very limited, and thus

can’t be used for constructing a calculable closed string field theory. (N.Moeller; Wolf, Zwiebach)

Therefore, in order to obtain an explicit construction of closed SFT, either study minimal area metric in great detail or

find an alternate construction of string vertices.

Recently, cubic and one loop tadpole string vertices have been constructed explicitly, without using the minimal area

metric. However, this construction might not be convenient for constructing the complete set of string vertices.

(Erler, Konopka, Sachs)
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Hyperbolic Geometry and Closed Superstring Field Theory

Alternate construction of the complete set of string vertices using Riemann surfaces endowed with metric having

−1 constant curvature.

EveryR, hyperbolic Riemann surface with n punctures and h handles, can be obtained by the proper

discontinuous action of the Fuchsian group Γ on the Poincaré upper half-planeH:

R ' H/Γ

The Poincaré upper half-plane is endowed with the metric:

ds
2

=
dzdz̄

(Im z)2

The Fuchsian group Γ is a subgroup of PSL(2,R), the automorphism group ofH.
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The Teichmüller Space of Hyperbolic Metrics

twist
glue pull tight

The nice feature of hyperbolic metric is that, every hyperbolic metric on a genus h Riemann surface with n

punctures can be obtained by the geometric sum of 2h− 2 + n number of hyperbolic pairs of pants.

Each attaching site has two parameters: the geodesic length ` of the boundary and the twist τ performed before

gluing them. The Fenchel-Nielsen parameters at 3h− 3 + n attaching sites

(τj, `j) 1 ≤ j ≤ 3h − 3 + n τj ∈ R `j ∈ R+

for a fixed pants decomposition parametrizes all n punctured genus h Riemann surfaces with hyperbolic metric on it.
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The Moduli Space of Hyperbolic Metric

R R

Two Riemann surfaces with two different values for the Fenchel-Nielsen coordinates can’t be related two each other

by the action of infinitesimal diffeomrphisms. However, two such Riemann surfaces may be related to each other by

acting with the elements in the mapping class group (MCG, the group of large diffeomorphisms).

Unfortunately, the action of MCG group elements on the Fenchel-Nielsen coordinates is not tractable. Therefore, a

clear characterization of the moduli space in terms of the Fenchel-Nielsen coordinates is not known.

Surprisingly, Maryam Mirzakhani showed that, in spite of this difficulty, the Fenchl-Nielsen coordinates can be

efficiently used for performing integrations over the moduli space.
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The Naive String Vertices

ConsiderR∗, genus-h hyperbolic Riemann surface with m number of NS-punctures, n number of R-punctures,

and having no simple closed geodesic with length ` ≤ c∗, with c∗ � 1.

The local coordinates around the punctures are defined to be e
π2

c∗ w , where w is the natural local coordinate

induced from the hyperbolic metric. The unit area disc around a puncture on a hyperbolic Riemann surface is

isometric to a cusp, punctured disc with metric

ds
2

0 =

(
|dw|
|w|ln|w|

)2

All inequivalent hyperbolic Riemann surfacesR∗ with a consistent choice of PCO distribution form the

string vertexV0
h,m,n .

Check whether the spaceV0
h,m,n together with the Feynman diagrams provide a single cover ofMh,m+n .

13/34



Plumbing Fixture of Hyperbolic Riemann Surfaces

Plumbing fixture of punctured unit discs with metric ds
2

0 {w1w2 = t

∣∣∣ |w1|, |w2|, |t| < 1} provides

an annulus with curvature accumulated on a curve⇒ Plumbing fixture of hyperbolic Riemann surfaces does

not provide a hyperbolic Riemann surface.

Curvature of the metric on the glued surface ds
2

graft has a deviation of the magnitude

(
1

ln|t|

)2

from that of the

hyperbolic metric.

The metric e
2f

ds
2

graft on a Riemann surface has constant curvature−1 provided

Df − e
2f

= C

C: Gauss curvature of the metric ds
2

graft D: the Laplace-Beltrami operator on the surface

Hyperbolic metric on the glued surface, can be found by solving the curvature correction equation.
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The Expansion for the Hyperbolic Metric

For small t the leading order term in the expansion for the hyperbolic metric onRt , surface with k number of

plumbing collars, written in terms of the i th
collar geodesic length `i = − 2π2

ln |ti |

ds
2

hyp = ds
2

graft

{
1 +

k∑
i=1

`2
i

3

(
E
†
i,1 + E

†
i,2

)}

E
†
i,1 and E

†
i,2 are the modified Eisenstein series E associated to the pair of punctures plumbed to form the i th

collar, with a modification on the plumbing collar regions. (Obitsu, Wolpert, Wolf)
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The Corrected String Vertices

The local coordinates on the surfaces lying at the boundary of the string vertices and that on the glued surfaces do

not match⇒ The naive string vertices provide only an approximate cell decomposition of the moduli space, which

become more and more accurate as we take the parameter c∗ → 0.

V0
h,m,n Mh,m+n

We can correct the string vertices to the order c
2
∗ by modifying the choice of local coordinates around the punctures

continuously on the surfaces that belongs to the boundary region of the string vertex in a way that compensate for

the deviation of the induced metric on the glued surfaces from the hyperbolic metric.
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Distribution of Picture Changing Operators

The PCO distribution on a Riemann surface that belongs to a string vertex:

I Must be invariant under the action of the mapping class group.

I Must be invariant under the permutation of the punctures (NS and R separately).

I Must satisfy the geometric equation.
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PCO distribution on Surface with only NS punctures

OnR, a genus h Riemann surface with only m number of NS punctures, we must insert 2h− 2 + m number

of PCOs. There are 2h− 2 + m pairs of pants onR ⇒ one PCO for each pair of pants.

R

L3

L1L1

L2

p1 p2

PCO distribution that is symmetric with respect the boundaries, and invariant under the interchange of the two

hexagons

X̂ (P) ≡ X̂ (p1 {P}) + X̂ (p2 {P})
2

X̂ (z) = X (z)− ∂ξ(z)dz

p1, p2: the centroids of right and left hexagons.
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Identities for the Simple Closed Geodesics

Consider r multi-curves onR made up of simple closed geodesics:

γi =

ki∑
vi =1

γivi
i = 1, · · · , r

Assume that these multi-curves satisfy the identity:

r∑
i=1

∑
hi∈

MCG(R)
Stab(γi )

Zi (`hiγi ) = 1

Stab(γi): the subgroup of MCG (R) that keeps the multi-curveγi invariant.

Property of Zi : lim
`γi→∞

Zi (`γi ) = O
(

e
−`γi

)
Two such identities are known: one is due to McShane and Mirzakhani and the other is due Luo and Tan.
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The Stabilizer Group

CuttingR alongγi provides the pairs of pants Pi1, · · · , Pimi
and the disconnected surfaces

Ri1, · · · ,Risi

ki⋂
vi =1

Stab(γivi
) =

MCG (Ri1)× · · · × MCG (Risi
)× Dehn

∗
(γi1)× · · · × Dehn

∗
(γiki

)

Dehn
∗ (γivi

): the group generated by the half twist with respect to the curveγivi
, ifγivi

bounds a torus with a

single boundary and otherwise is generated by the full twist.

Let us also assume that the simple closed geodesicsγivi
satisfy the identity:∑

hivi
∈Dehn

∗
(γivi

)

Y
(
`hivi

γivi
, τhivi

γivi

)
= 1
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Combined Identity for the Simple Closed Geodesics

Combine these two identities to obtain the following identity:

r∑
i=1

∑
gi∈

MCG(R)∏si
qi =1 MCG(Riqi

)

Hi (giγi) = 1

Hi (giγi) ≡
∣∣∩ki

vi =1Stab (γivi
)
∣∣

|Stab (γi)|
Zi (`giγi )

ki∏
vi =1

Y
(
`giγivi

, τgiγivi

)
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The MCG Invariant PCO distribution

The elements of MCG(Riqi
); qi = 1, · · · , si , act trivially on the pairs of pants Pi1, · · · , Pimi

All elements of MCG(R) that acts non-trivially on these pairs of pants belong to the subgroup

MCG(R)∏si
qi =1 MCG(Riqi

)

⇒ the following distribution of PCO’s is invariant under the action of MCG(R):

r∑
i=1

∑
gi

Hi (giγi)

mi∧
bi =1

X̂
(

giPibi

)
Each term in this distribution with index i contain only mi number of PCO’s, we need 2g − 2 + m number of

PCO’s in each term .
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MCG Invariant PCO distribution

Consider the identities for the surfaces Riqi
i = 1, · · · , r qi = 1, · · · , si and

continue this process until we obtain only pairs of pants as component surfaces.

At the last stage, we obtain the PCO distribution as a summation over all the elements in Mod(R):

K =
∑

G

∑
g ∈ MCG(R)

DG

(
~̀

g ◦ ρG
, ~τg ◦ ρG

)
∧Q

i=1 X̂
(

P
i
g ◦ ρG

)
The sum is over all possible trivalent graphs with m external legs and h loops.

DG

(
~̀ρG

, ~τρG

)
can be found using an algorithm similar to the Feynman rules for a cubic theory.

Each term contains 2h− 2 + m number of PCOs, and by construction, the PCO distribution K is invariant

under the action of all elements in MCG(R).

Symmetrize the final PCO distribution with respect to the punctures onR.
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The Improved String Vertices

It is possible to show that the PCO distribution K satisfy the geometric identity, up to an error. The origin of this error

is same as that of the error encountered in the choice of local coordinates and can be fixed in a similar way.

PCO distribution can be generalized to the case when there are R-punctures.

To the second order in c∗, the modified string verticesV2
h,m,n a single cover of the moduli space.

V2
h,m,n

⋃
F

0,1
h,m,n

⋃
· · ·
⋃

F
0,Q
h,m,n

O(c
2
∗)

= Mh,m+n

The string verticesV2
h,m,n provide a consistent closed superstring field theory by keeping c∗ very small.

Taking c∗ very small corresponds to increasing the size of the region inside the moduli space that corresponds the

string vertex. For constructing a string field theory we are allowed to use string vertex having arbitrary size.
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The Off-shell Superstring Measure

The superstring measure is given by

Ωh,m,n
p (Φ) =

〈R|Bp|Φ〉
(2πi)Q

|Φ〉: element of the Hilbert spaceH⊗m
NS ⊗H⊗n

R of the world-sheet SCFT with the ghost number

nΦ = p + 6− 6h

〈R|: surface state associated with the surfaceR

Bp =

p∑
q=0

q≤N

K
(q) ∧ Bp−q N = 2h − 2 + m +

n

2

K
(q)

: q-form component of K

Bp−q : differential form constructed using the Beltrami differentials 25/34



The Effective Expression and Trivalent Graphs

We can express {Ψ1, · · · ,Ψm+n}h as follows:

∑
G

∫ ∞
`G1 =c∗

∫ ∞
τG

1 =−∞
· · ·
∫ ∞
`GQ=c∗

∫ ∞
τG

Q =−∞
DG

(
~̀

G, ~τG

)∑
q=0

q≤N

〈R|X(q) ∧ Bp−q|Φ〉G
(2πi)Q

The sum is over all possible trivalent graphs with m + n external legs and h loops.(
~̀

G, ~τG

)
is the Fenchel-Nielsen coordinates for the pants decomposition correspond to the trivalent graph G.

In the absence of R-punctures, X
(q)

is the q-form component of

X ≡ ∧Q
i=1X̂

(
P

i
G

)
The form of X requires modifications in the case with R-punctures.
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The Possibility of a Cubic Closed String Field Theory?

We can express {Ψ1, · · · ,Ψn}h in bosonic closed string field theory as follows:∑
G

∫ ∞
`G1 =c∗

∫ ∞
τG

1 =−∞
· · ·
∫ ∞
`GQ=c∗

∫ ∞
τG

Q =−∞
DG

(
~̀

G, ~τG

) 〈R|B2Q|Φ〉G
(2πi)Q

The elementary interaction strength of SFT seems to be arising from a cubic theory. This statement might be true, if

the function DG

(
~̀

G, ~τG

)
is equal to the product of 2h− 2 + n number of identical functions.

The argument of these functions must be the three boundary lengths of a pair of pants that belongs to the pants

decomposition associated with the graph G., i.e.

DG

(
~̀

G, ~τG

)
=

2h−2+n∏
i=1

F
(

P
i

G

)
The known identities may not have such property.
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The Propagator and the Cubic Interaction?

Li

Li

Lj

Lk

F (Li , Lj , Lk )
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Summary

Local coordinates around the punctures induced from the hyperbolic metric after a slight modification satisfy the

geometric condition, imposed by the BV equation.

Identities satisfied by the simple closed geodesics on the hyperbolic Riemann surfaces can be used to obtain an

MCG invariant PCO distribution that satisfy the BV equation.

Such a choice of PCO distribution leads to a simple effective expression for the quantum master action.

⇒Hyperbolic Riemann surfaces can be used to construct a calculable closed superstring field theory.

Provide efficient tools for computing the amplitudes in the conventional formulation of superstring theory.
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Future Prospects

Superstring field theory in the presence of D-branes.

Implications of the developments in the Symplectic geometry of the moduli space in string theory.

Study the already known non-renormalization statements by using the SFT effective actions, and check whether

there exist similar statements for massive states.

Effective action for superstring theory in AdS with large size.

Finite temperature SFT.

Tachyon condensation in closed string theory.
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The Mirzakhani-McShane Identity

For any genus g hyperbolic Riemann surfaceRg,n with n borders L1, · · · , Ln having lengths l1, · · · , ln

satisfying 3g − 3 + n > 0 (Mirzakhani, McShane):∑
{γ1,γ2}∈F1

D(l1, `γ1 , `γ2)

l1
+

n∑
i=2

∑
γ∈F1i

E(l1, li , `γ)

l1
= 1

D(x, y, z) = x − ln

(
cosh( y

2 )+cosh( x+z
2 )

cosh( y
2 )+cosh( x−z

2 )

)

E(x, y, z) = 2 ln

(
e

x
2 +e

y+z
2

e
− x

2 +e
y+z

2

)
Fi : set of pairs of MCG images of the simple closed curves {γ1, γ2} bounding a pair of pants with Li .

Fi j : set of MCG images of the simple closed curvesγ bounding a pair of pants with Li and Lj .
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Property of Mirzakhani-MacShane Identity

lim
y,z→∞

D(x, y, z) = lim
y,z→∞

4e
− y+z

2 sinh(
x

2
)→ 0

lim
z→∞

E(x, y, z)→ 0

The Luo-Tan identity for simple closed geodesics on hyperbolic Riemann surfaces with or without borders provides

another decomposition of unity. (Luo, Tan)
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Identity for Dehn Twist

∑
g∈Dehn

∗
(γ)

sin
2
(

2
Mgγπτgγ/`gγ

)(
2

Mgγπτgγ/`gγ

)2 = 1

τγ is the twist with respect to the simple closed geodesicγi

Mγ = 1 ifγ bounds a torus with one boundary component otherwise Mγ = 0.

In general the twisting parameter alongγ can takes value between 0 and `γ .

In the case of a simple geodesicγ separating off a one-handle, τγ varies with fundamental region

{0 ≤ τγ ≤ `γ
2
}.

The reason is that every Riemann surfaceR ∈M1,1 comes with an elliptic involution
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