On universal solutions in OSFT

Martin Schnabl

in collaboration with Matěj Kudrna

Institute of Physics AS CR

SFT@HRI, Allahabad India, February 12, 2018

Plan

- 30 years of level truncation in OSFT
 20 years of Sen's conjectures
- SU(1,1) symmetry of the ghost vertex in Siegel gauge
- Scan of universal solutions in level truncation

30 years of level truncation in OSFT

Volume 207, number 2

PHYSICS LETTERS B

16 June 1988

THE STATIC TACHYON POTENTIAL IN THE OPEN BOSONIC STRING THEORY

V. Alan KOSTELECKÝ Physics Department, Indiana University, Bloomington, IN 47405, USA

and

Stuart SAMUEL Physics Department. City College of New York, New York, NY 10031. USA

Received 25 January 1988

In an effort to understand whether the open bosonic string theory has a stable vacuum, the four-point contribution to the static tachyon potential is computed. This off-shell calculation is carried out using covariant string field theory.

String theory [1,2] is a proposal for a consistent theory of gravity [3], that can contain anomaly-free gauge groups large enough to include $SU(3) \times$ $SU(2) \times U(1)$ [4,5]. It is at present the unique theory having the possibility of combining the four fundamental interactions in a unified quantum theory. in this direction and may be helpful in analyzing more realistic string theories.

The bosonic string theory is an ideal arena for such investigations. Since it contains a tachyon, the perturbative vacuum is unstable. Our goal is to try to determine, at tree level, whether a stable vacuum exists. Unfortunately, we are unable to incorporate all the tree-level effects. Instead, we include tree-level diagrams up to four external legs.

First level 0 calculation

First level ∞ calculation

- The difference in the action between the unstable vacuum and the perturbatively stable vacuum should be $E = V T_{25}$, where V is the volume of space-time and T_{25} is the tension of the D25-brane.
- Lower-dimensional Dp-branes should be realized as soliton configurations of the tachyon and other string fields.
- The perturbatively stable vacuum should correspond to the closed string vacuum. In particular, there should be no physical open string excitations around this vacuum.

Ashoke Sen '98 - '99 (this version taken from Ellwood, Taylor '01)

Sen's conjectures are now considered proven analytically in OSFT:

- 1. In bosonic theory: MS '05 In superstring: Erler '13
- 2. In bosonic theory: Erler, Maccaferri '14
- 3. In bosonic theory: MS, Ellwood '06 In superstring: Erler '13

 First evidence, however, has been provided by a numerical approach – level truncation

0	-0.684616	
2	-0.959377	
4	-0.987822	Sen, Zwieabach 1999
6	-0.995177	
8	-0.997930	
10	-0.999182	Moeller, Taylor 2000
12	-0.999822	
14	-0.999826	
16	-1.000375	
18	-1.000494	Gaitotto, Rastelli 2002
20	-1.000563	Kishimoto, Takahashi 2009
22	-1.000602	
24	-1.000623	
26	-1.000631	Kishimoto 2011
28	-1.000632	
30	-1.000627	

$$-\frac{2^{12}}{3^{10}}\pi^2$$

Actually they used (L,2L) scheme, so their numbers are a bit different

Lots of other references for superstring and/or lump solutions etc.

 The computation gets messy pretty quickly, already at level 2 where the string field can takes the form

$$|T\rangle = tc_1|0\rangle + uc_{-1}|0\rangle + v \cdot \frac{1}{\sqrt{13}}L_{-2}c_1|0\rangle$$

one has to find stationary points of

$$\begin{split} f^{(4)}(T) &= 2\pi^2 \Big(-\frac{1}{2}t^2 + \frac{3^3\sqrt{3}}{2^6}t^3 & \text{Sen, Zwiebach 1999} \\ &-\frac{1}{2}u^2 + \frac{1}{2}v^2 + \frac{11\cdot 3\sqrt{3}}{2^6}t^2u - \frac{5\cdot 3\sqrt{39}}{2^6}t^2v \\ &+\frac{19}{2^6\sqrt{3}}tu^2 + \frac{7\cdot 83}{2^6\cdot 3\sqrt{3}}tv^2 - \frac{11\cdot 5\sqrt{13}}{2^5\cdot 3\sqrt{3}}tuv \Big). \end{split}$$

Tricks for level truncation

Critical ingredients for a useful computerized level truncation

- 1. Convenient basis of states universality, twist condition, gauge condition, SU(1,1) condition,...
- 2. Conservation laws for vertex computation
- 3. Finding a good starting point for Newton's method
- 4. Algorithmic tricks (parallelism)
- 5. Having good observables
- 6. Fits to infinite level

Tricks for level truncation

 Employing these tricks and better computer power one moves on a logarithmic curve in time

Future of level truncation

N.B.: Level 30 is interesting, as we should see the oscillation for the tachyon vacuum energy predicted by Gaiotto and Rastelli.

 Zwiebach (2000), following an observation of Hata and Shinohara, has shown that the SU(1,1) generators

$$J_{3} = \frac{1}{2} \sum_{n=1}^{\infty} \left(c_{-n} b_{n} - b_{-n} c_{n} \right), \qquad J_{+} = \sum_{n=1}^{\infty} n c_{-n} c_{n}, \qquad J_{-} = \sum_{n=1}^{\infty} \frac{1}{n} b_{-n} b_{n},$$

preserve the Witten's vertex in Siegel gauge $b_0 \Psi = 0$

$${}_{123}\langle V | \left(J_{\pm,3}^{(1)} + J_{\pm,3}^{(2)} + J_{\pm,3}^{(3)} \right) = 0$$

For free action the symmetry was known by Siegel and Zwiebach already in 1986

- Under this symmetry (n c_{-n}, b_{-n}) transforms as a doublet, so it mixes ghost numbers
- It allows however to restrict the string field states to the singlet sector. In consequence the coefficients of
 (3b₋₁c₋₃)|Ω⟩ and (b₋₃c₋₁)|Ω⟩ are equal for such solutions, and there are more relations like this at higher levels

 Convenient basis is obtained by forming twisted descendants using c=-2 twisted Virasoro generators

$$L_n^{'gh} = L_n^{gh} + nj_n^{gh} + \delta_{n,0} = \sum_{m=-\infty}^{\infty} (n-m) : b_m c_{n-m} : \qquad \text{GRSZ 2001}$$

on the twisted Virasoro primaries

$$|j,m\rangle \equiv N_{j,m}(J_{-})^{j-m}|j,j\rangle$$

where

$$|j,j\rangle \equiv c_{-2j}\dots c_{-1}c_1|0\rangle$$

$$N_{j,m} = \prod_{k=m+1}^{j} (j(j+1) - k(k-1))^{-\frac{1}{2}}$$

 Generic string field in the universal sector in Siegel gauge can be written as

$$\Psi = \sum_{K,L,j,m} t_{K,L,j,m} L^m_{-K} L'^{gh}_{-L} |j,m\rangle \qquad \qquad \textit{K, L are multi-indices}$$

For classical solutions we are interested in m=0, since ghost number g=2m+1.

 Completeness of the presentation (verification of the multiplicities) can be checked by computing the character for Siegel gauge

$$\mathrm{ch}^{\mathrm{Siegel}}(q, y) = \frac{1}{1+y} \mathrm{ch}^{\mathrm{gh}}(q, y)$$

$$= \mathrm{ch}^{\mathrm{gen}}(q) \sum_{g=-\infty}^{\infty} \sum_{s=|g-1|}^{\infty} (-1)^{s+g-1} y^g q^{\frac{s^2+s}{2}}$$

$$= \mathrm{ch}^{\mathrm{gen}}(q) \sum_{g=-\infty}^{\infty} \sum_{s=|g-1| \mod 2}^{\infty} y^g \left(q^{\frac{s^2+s}{2}} - q^{\frac{(s+1)^2+s+1}{2}}\right)$$

and rewriting it as

$$\operatorname{ch}^{\operatorname{Siegel}}(q, y) = \sum_{g=-\infty}^{\infty} \sum_{j=|g-1|/2 \mod 1}^{\infty} y^g \operatorname{ch}_j(q)$$
$$= \sum_{j=0 \mod 1/2}^{\infty} \sum_{m=-j}^{j} y^{2m+1} \operatorname{ch}_j(q)$$

where $ch_{j}(q) = ch^{gen}(q)q^{h_{j}}(1-q^{2j+1})$ $h_{j} = j(2j+1)$

N.B. The c=-2 theory possesses null states for ghost numbers 0,-3,-6,...

• The SU(1,1) symmetry of the vertex $_{123}\langle V | \left(J_{\pm,3}^{(1)} + J_{\pm,3}^{(2)} + J_{\pm,3}^{(3)} \right) = 0$

can be used to derive the Wigner-Eckart theorem

$$\langle V_3 | L_{-I_1}^{\prime gh} | j_1, m_1 \rangle L_{-I_2}^{\prime gh} | j_2, m_2 \rangle L_{-I_3}^{\prime gh} | j_3, m_3 \rangle = \begin{pmatrix} j_1 & j_2 & j_3 \\ m_1 & m_2 & m_3 \end{pmatrix} C(j_1, j_2, j_3, I_1, I_2, I_3)$$

where $\begin{pmatrix} j_1 & j_2 & j_3 \\ m_1 & m_2 & m_3 \end{pmatrix}$ are the standard SU(2) 3-j symbols

and $C(j_1, j_2, j_3, I_1, I_2, I_3)$ is *m*-independent reduced vertex

Cyclic property nicely manifest

$$\begin{pmatrix} j_1 & j_2 & j_3 \\ m_1 & m_2 & m_3 \end{pmatrix} = \begin{pmatrix} j_2 & j_3 & j_1 \\ m_2 & m_3 & m_1 \end{pmatrix} = \begin{pmatrix} j_3 & j_1 & j_2 \\ m_3 & m_1 & m_2 \end{pmatrix}$$

- Also the selection rules for which spins can combine together at the vertex trivially follow SU(2)
- Less expected properties stemming from

$$\begin{pmatrix} j_1 & j_2 & j_3 \\ -m_1 & -m_2 & -m_3 \end{pmatrix} = (-1)^{j_1+j_2+j_3} \begin{pmatrix} j_1 & j_2 & j_3 \\ m_1 & m_2 & m_3 \end{pmatrix}$$

imply that at *m=0* the sum of all three spins must be an even integer

• Let us introduce
$$J_{1,2} = \frac{1}{2} \left(J_+ \pm J_- \right)$$

(this is where SU(1,1) differs from SU(2))

 Exponentiating the generators we find two which preserve the gh.n.=1 (m=0) subspace

$$e^{i\pi J_1}|j,m\rangle = (-1)^j|j,-m\rangle$$
$$e^{\pi J_2}|j,m\rangle = (-1)^{j+m}|j,-m\rangle$$

These finite transformations change the sign of odd-spins and provide independent explanation why $\sum j_i \in 2\mathbb{Z}$

Conservation laws for vertex computations

- For non-singlet string fields standard Virasoro basis is the most convenient and one can use the standard conservation laws
- For singlet string fields it is useful to be able to compute the vertices directly. It can be done by combining *L* and *J* conservation laws

$$\langle V_3 | L_{-m}^{\prime gh(2)} = \langle V_3 | \left(\sum_n \alpha_n^{m(1)} L_n^{\prime gh(1)} + \sum_n \alpha_n^{m(2)} L_n^{\prime gh(2)} + \sum_n \alpha_n^{m(3)} L_n^{\prime gh(3)} + \alpha^{m(c)} c \right) - \langle V_3 | \left(\sum_n \left(m \beta_n^{m(1)} + n \alpha_n^{m(1)} \right) j_n^{gh(1)} + \sum_n \left(m \beta_n^{m(2)} + n \alpha_n^{m(2)} \right) j_n^{gh(2)} + \sum_n \left(m \beta_n^{m(3)} + n \alpha_n^{m(3)} \right) j_n^{gh(3)} + m \beta^{m(q)} q \right).$$

and observing that we need only few extra states $j_{-k}^{gh}L_{-M}^{\prime gh}c_1|0\rangle$

Starting points for Newton's method

- For tachyon solution one simple uses the solution from a previous level and improves it by Newton's method for the next level. The very first starting point is thus at level 0.
- For more exotic solutions one has to start at higher level where there are more solutions. A convenient way is to use linear homotopy method. The trick is to continuously deform our system of equations to something we can solve completely e.g.

$$\begin{aligned} t_1(1 - t_1) &= 0 \\ t_2(1 - t_2) &= 0 \end{aligned}$$

Parallelism

- These days computers tend to have more cores often with lower performance (for energy consumption reasons). So one has to parallelize the computation.
- For vertices the parallelization is a bit undeterministic (but it works!), since we have a recursive algorithm, but we do not know when a given core finishes its task
- Parallelization can be also employed for matrix manipulations in the Newton's method

Observables for universal solutions

- Energy computed from the action *E=V+1*
- The only independent Ellwood invariant

$$E_0 = -4\pi i \langle E[c\bar{c}\partial X^0\bar{\partial}X^0]|\Psi\rangle + 1$$

Out-of-Siegel-gauge equations (we take just the first one)

$$\Delta_S = \left| \langle 0 | c_{-1} j_2^{gh} | Q \Psi + \Psi * \Psi \rangle \right| = \left| \langle 0 | c_{-1} c_0 b_2 | Q \Psi + \Psi * \Psi \rangle \right|$$

• Ratios
$$R_n = (-1)^n \frac{54}{65} \frac{\langle \Psi | c_0 L_{2n}^m | \Psi \rangle}{\langle \Psi | c_0 L_0 | \Psi \rangle}$$

Siegel gauge universal solutions

Our results: Im[E]10 ⊢ Half brane 8 6 Ghost brane γ Double brane Half ghost brane Tachyon vacuum Perturbative vacuum Re[E] -55 10 0

Figure 1: Twist even solutions at level 6 and twist non-even solutions at level 5 represented as dots or diamonds respectively in the energy complex plane. SU(1,1) singlet solutions are represented by blue color, non-singlet solutions by red. By black line and dots we show the improvement of the interesting solutions to higher levels, the dashed part of the line is infinite level extrapolation.

Siegel gauge universal solutions

Properties of the surviving solutions

Solution	$Energy^{L=\infty}$	$E_0^{L=\infty}$	Δ^∞_S	Reality	Twist even	$\begin{array}{c} {\rm SU}(1,1) \\ {\rm singlet} \end{array}$
tachyon vacuum	-8×10^{-6}	0.0004	-7×10^{-6}	yes	yes	yes
single brane	1	1	0	yes	yes	yes
"ghost brane"	-1.13 + 0.024i	-1.01 + 0.11i	0.08	no	yes	yes
"double brane"	1.40 + 0.11i	1.23 + 0.04i	0.20	$possibly^*$	yes	yes
"half ghost brane"	-0.51	-0.66	0.17	$pseudoreal^{**}$	no	no
"half brane"	0.68 - 0.01i	0.54 + 0.1i	0.23	no	no	no

* as
$$L \to \infty$$

** for $L \ge 22$

Siegel gauge universal solutions

		Twist even SU	J(1,1) singlets		
Solution	level	Energy	E_0	Δ_S	Im/Re
perturbative vacuum		1	1	0	0
to allow an annual second	30	-0.000627118	0.0120671	0.00090829	0
tachyon vacuum	∞	-8×10^{-6}	0.0004	-7×10^{-6}	0
"double brone"	28	1.8832 - 0.161337i	$1.32953 \pm 0.178426i$	0.535827	0.51589
double brane	∞	$1.40 \pm 0.11i$	$1.23 \pm 0.04i$	0.20	-0.05
"choet brono"	28	-2.11732 - 0.371832i	-1.19063 + 0.165908i	0.267977	0.398931
gnost brane	8	$-1.13 \pm 0.024i$	$-1.01 \pm 0.11i$	0.08	0.33
No. 0	24	-0.35331	3.35886	1.97365	0
NO. 3	00	0.4	2.9	0.5	0
No. 10	24	-4.89552	2.46007	7.37201	0
10. 10	00	-6.	2.3	10.	0
No. 14	28	-0.61986 - 2.07194i	-0.304394 - 0.125328i	0.51849	0.567639
100. 14	00	-0.059 - 0.28i	-0.18 - 0.08i	0.16	0.4
No. 16	24	19.1573 + 6.2523i	1.39521 + 0.659265i	2.64483	1.40716
No. 49	24	-6.50268 - 8.39148i	2.15961 + 0.077867i	1.79055	0.750635
No. 51	24	1.67067 - 4.96206i	-0.091597 - 0.341405i	2.03866	1.31641
No. 55	24	-13.18 - 1.514i	0.538205 + 0.192177i	1.35519	0.222453
No. 65	24	-16.6534 - 5.7377i	0.541071 - 0.782319i	1.40638	0.756182
N- 77	24	-5.74905 - 4.10849i	0.508235 + 0.516736i	0.438803	0.844295
100. 11	∞	-51.8i	0.4 + 0.1i	0.2	0.8
N- 01	24	-7.96846 - 3.62476i	0.95657 - 0.64505i	1.63462	0.783216
100. 81	00	-5. + 1.i	0.8 - 0.6i	1.9	0.8
No. 01	24	$-3.86278 \pm 0.78003i$	-0.75477 - 0.028228i	1.49166	0.314904
100. 91	00	-1 1.i	-0.5 + 0.0i	0.9	0.4
No. 93	24	-6.60883 - 8.49812i	1.83907 - 0.047786i	1.58305	0.532952
N= 05	24	-9.83474 - 8.05476i	0.24612 + 0.462712i	1.02673	0.812354
10. 90	00	0 8.i	0.4 + 0.5i	-0.7	0.6

List of all solutions With |E| < 50

They are not that many!

		Twist even	non-singlets		
No. 231	22	6.27071 - 30.8278i	-1.35262 + 1.22029i	6.83759	0.496046

Non-even non-singlets					
"half short brane"	26	-0.88489	-0.427091	0.105198	0.600394
nan gnost brane	00	-0.51	-0.66	0.17	0.31
"half heave"	24	0.47454 - 1.11238i	0.488976 + 0.107413i	0.565206	1.20649
"half brane"	∞	0.68 - 0.010i	0.54 + 0.10i	0.23	1.3
No. 964	22	-10.5493	1.10974	7.58984	0.229845
NO. 204	00	-11	0.9	11	-0.3

Tachyon vacuum

Tachyon vacuum up to level 30

Level	Energy	E_0	Δ_S
2	0.0406234	0.110138	0.0333299
4	0.0121782	0.0680476	0.0145013
6	0.00482288	0.0489211	0.00841347
8	0.00206982	0.0388252	0.00564143
10	0.000817542	0.0318852	0.00412431
12	0.000177737	0.0274405	0.00319231
14	-0.00017373	0.0238285	0.00257255
16	-0.000375452	0.0213232	0.00213597
18	-0.000493711	0.0190955	0.00181467
20	-0.000562955	0.0174832	0.00156995
22	-0.000602262	0.0159666	0.00137834
24	-0.000622749	0.0148397	0.00122487
26	-0.000631156	0.0137381	0.0010996
28	-0.000631707	0.0129049	0.00099569
30	-0.000627118	0.0120671	0.00090829
∞	-8×10^{-6}	0.0004	-7×10^{-6}
σ	2×10^{-6}	0.0013	2×10^{-6}

"Double brane"

Level	Energy	E_0	Δ_S	$\mathrm{Im/Re}$
2	-1.42791 - 3.40442i	2.00934 - 0.054534i	2.9861	2.47302
4	1.19625 - 2.25966i	1.73651 + 0.117637i	1.65103	5.23177
6	1.84813 - 1.58507i	1.60634 + 0.195442i	1.2563	2.20828
8	2.04207 - 1.14971i	1.53973 + 0.217911i	1.05199	1.51157
10	2.08908 - 0.866428i	1.48598 + 0.228010i	0.921766	1.20095
12	2.08515 - 0.674602i	1.45210 + 0.227059i	0.83043	1.01867
14	2.06302 - 0.53887i	1.42232 + 0.224184i	0.762358	0.895048
16	2.03499 - 0.439057i	1.40194 + 0.218266i	0.709389	0.804018
18	2.00593 - 0.363272i	1.38304 + 0.212332i	0.666812	0.733269
20	1.9778 - 0.304197i	1.36942 + 0.205378i	0.631713	0.675682
22	1.95135 - 0.257139i	1.35632 + 0.198765i	0.602187	0.627204
24	1.92679 - 0.218971i	1.34654 + 0.191784i	0.576934	0.585387
26	1.90411 - 0.187545i	1.33691 + 0.185169i	0.555036	0.548697
28	1.8832 - 0.161337i	1.32953 + 0.178426i	0.535827	0.51589
∞	1.40 + 0.11i	1.23 + 0.04i	0.20	-0.05
σ	0.02 + 0.02i	0.02 + 0.05i	0.01	0.16

Out-of-Siegel-gauge equations seem to be problematic ! But it is not far from being asymptotically real.

"Double brane"

At level 10 it looks like a double brane, but then it wonders away...

Interestingly the quadratic identities are asymptotically violated at 10-20% level

"Ghost brane"

Level	Energy	E_0	Δ_S	$\mathrm{Im/Re}$
4	-15.534 - 6.15021i	-2.67655 + 0.349878i	2.06533	0.410863
6	-7.41971 - 2.77358i	-1.94969 + 0.275957i	1.02147	0.418622
8	-5.16142 - 1.76196i	-1.68072 + 0.250813i	0.71436	0.432211
10	-4.12161 - 1.28659i	-1.52959 + 0.229158i	0.56818	0.434482
12	-3.52505 - 1.0123i	-1.43859 + 0.216265i	0.482212	0.432647
14	-3.13749 - 0.834158i	-1.37324 + 0.204977i	0.425217	0.429121
16	-2.86477 - 0.709192i	-1.32713 + 0.19685i	0.384407	0.424871
18	-2.66193 - 0.616662i	-1.29055 + 0.189495i	0.353578	0.42024
20	-2.50477 - 0.545352i	-1.26259 + 0.183675i	0.329357	0.415469
22	-2.37916 - 0.488679i	-1.23917 + 0.178292i	0.309749	0.410702
24	-2.27628 - 0.442528i	-1.22039 + 0.173791i	0.293495	0.406007
26	-2.19032 - 0.404195i	-1.20411 + 0.169568i	0.279762	0.402137
28	-2.11732 - 0.371832i	-1.19063 + 0.165908i	0.267977	0.398931
∞	-1.13 + 0.024i	-1.01 + 0.11i	0.08	0.33
σ	0.03 + 0.003i	0.04 + 0.02i	0.01	0.03

Solution inherently complex, but it has smallest Δ_S ,, difference between the two energies, and also the R's are close to 1!

"Half ghost brane"

Level	Energy	E_0	Δ_S	$\mathrm{Im/Re}$
4	-12.316 - 3.03642i	-1.67202 + 0.546917i	1.2313	0.865144
5	-6.45268 - 1.27696i	-0.906424 + 0.418332i	0.620185	1.16737
6	-4.35705 - 0.78598i	-0.865572 + 0.35625i	0.415511	0.954718
7	-3.33673 - 0.484238i	-0.656885 + 0.311362i	0.312715	1.06523
8	-2.72264 - 0.346946i	-0.649858 + 0.280771i	0.254214	0.941507
9	-2.32595 - 0.239544i	-0.548369 + 0.252446i	0.214425	1.00849
10	-2.03976 - 0.180921i	-0.544639 + 0.229285i	0.187496	0.919346
11	-1.83136 - 0.130289i	-0.483438 + 0.20816i	0.166609	0.966213
12	-1.6664 - 0.0999362i	-0.483896 + 0.190449i	0.151204	0.894168
13	-1.53812 - 0.0724385i	-0.442433 + 0.172804i	0.138347	0.930032
14	-1.43071 - 0.0550496i	-0.442547 + 0.157289i	0.128364	0.86812
15	-1.34368 - 0.0389625i	-0.412389 + 0.141337i	0.119637	0.896007
16	-1.26801 - 0.028504i	-0.413658 + 0.127156i	0.112624	0.838677
17	-1.20493 - 0.0188315i	-0.390587 + 0.111523i	0.106296	0.860183
18	-1.14861 - 0.0125338i	-0.391441 + 0.0971558i	0.101085	0.804464
19	-1.10069 - 0.00689461i	-0.373155 + 0.0800877i	0.0962737	0.819172
20	-1.05703 - 0.00341677i	-0.374456 + 0.0632733i	0.0922374	0.760415
21	-1.01932 - 0.00075642i	-0.359549 + 0.0384798i	0.0884464	0.760498
22	-0.984567	-0.383157	0.0927055	0.65173
23	-0.955695	-0.399688	0.0997222	0.662377
24	-0.929072	-0.415166	0.102253	0.618092
25	-0.906413	-0.417504	0.104245	0.637956
26	-0.884894	-0.427091	0.105198	0.600394
∞	-0.51	-0.66	0.17	0.31

Solution becomes pseudo-real starting at L=22.

Some fits are difficult!

Relaxing the Siegel gauge?

- Without gauge we have enormous proliferation of solutions (figure shows level 6)
- No good notion of good solution except for closeness of the two energies (denoted by color)
- Newton's method erratic without gauge fixing

Conclusions

- Level truncation is still fun after 30 years
- Provides interesting information and clues about possible solutions (see talk by Vošmera).
- Are there proper exotic solutions (possibly complex) ? If yes, what is their interpretation?
- One can go beyond twist symmetry, reality, singlet condition etc., but not past gauge fixing (cf. talk by Kudrna)