Swampland Conjectures and their Phenomenological Applications

Gary Shiu University of Wisconsin-Madison

String Field Theory & String Phenomenology

String Field Theory & String Phenomenology

String Theory Landscape

String Theory Landscape

An even vaster Swampland?

An even vaster Swampland?

END OF LANDSCAPE SWAMPLAND BEYOND THIS POINT

Landscape vs Swampland

Landscape vs Swampland

Landscape vs Swampland

We refer to the space of quantum field theories which are incompatible with quantum gravity as the *swampland*. [Vafa, '05]

Based on work with:

J. Brown

W. Cottrell

P. Soler

M. Montero

Y. Hamada

S. Andriolo

D.Junghans

T. Noumi

J. Brown, W. Cottrell, GS, P. Soler, JHEP **1510**, 023 (2015), JHEP **1604**, 017 (2016), JHEP **1610** 025 (2016).
 M. Montero, GS and P. Soler, JHEP **1610** 159 (2016).
 W. Cottrell, GS and P. Soler, arXiv:1611.06270 [hep-th].
 Y. Hamada and GS, JHEP **1711**, 043 (2017).
 S. Andriolo, D. Junghans, T. Noumi and GS, arXiv: 1802.04287 [hep-th].

Outline

- What is the Weak Gravity Conjecture?
- Phenomenological applications of the WGC Axions, large field inflation, and CMB B-mode QCD axion
 Relating Neutrino masses and type with the CC.
- Evidences for the WGC
- Conclusions

Quantum Gravity and Global Symmetries

QG and Global Symmetries

• **Global symmetries** are expected to be violated by gravity:

- No hair theorem: Hawking radiation is insensitive to Q.
 - \blacksquare Infinite number of states (remnants) with $m \lesssim M_p$
 - Violation of entropy bounds. At finite temperature (e.g. in Rindler space), the density of states blows up.
 Susskind '95
- **Swampland conjecture**: theories with exact global symmetries are not UV-completable.
- In (perturbative) string theory, all symmetries are gauged
- Many phenomenological ramifications, e.g., mini-charged DM comes with a new massless gauge boson [GS, Soler, Ye, '13].

- We have argued that global symmetries are in conflict with Quantum Gravity
- Global symmetry = gauge symmetry at g=0
 - It is not unreasonable to expect problems for gauge theories in the weak coupling limit: g → 0
- When do things go wrong? How? ...

Arkani-Hamed, Motl, Nicolis, Vafa '06

• The conjecture:

"Gravity is the Weakest Force"

• For every long range gauge field there exists a particle of charge q and mass m, s.t.

$$\frac{q}{m}M_P \ge ``1"$$

• Seems to hold for all known string theory models.

Arkani-Hamed, Motl, Nicolis, Vafa '06

• The conjecture:

"Gravity is the Weakest Force"

• For every long range gauge field there exists a particle of charge q and mass m, s.t.

$$\frac{q}{m}M_P \ge ``1" \equiv \frac{Q_{Ext}}{M_{Ext}}M_P$$

• Seems to hold for all known string theory models.

• Take U(1) gauge theory and a scalar with $m>q\,M_p$

 All these BH states are exactly stable. In particular, large bound states (charged black holes) do not Hawking radiate once they reach the extremal limit M=Q, equiv. T=0.

"...there should not exist a large number of exactly stable objects (extremal black holes) whose stability is not protected by any symmetries."

Arkani-Hamed et al. '06

• Take U(1) gauge theory and a scalar with $m>q\,M_p$

 F_e F_g F_g F_e

 All these BH states are exactly stable. In particular, large bound states (charged black holes) do not Hawking radiate once they reach the extremal limit M=Q, equiv. T=0.

"...there should not exist a large number of exactly stable objects (extremal black holes) whose stability is not protected by any symmetries."

• Take U(1) gauge theory and a scalar with $m>q\,M_p$

- All these BH states are exactly stable. In particular, large bound states (charged black holes) do not Hawking radiate once they reach the extremal limit M=Q, equiv. T=0.
- In order to avoid a large number of exactly stable states one must demand the existence of some particle with

$$\frac{q}{m} \ge \frac{Q_{ext}}{M_{ext}} = \frac{1}{M_p}$$

Why is this a conjecture?

- Heuristic argument suggests <code>∃</code> a state <code>w/ $\frac{q}{m} \ge$ "1" $\equiv \frac{Q_{Ext}}{M_{Ext}}$ </code>
- One often invokes the remnants argument [Susskind] for the WGC but the situations are different (finite vs infinite mass range).

- Perfectly OK for some extremal BHs to be stable [e.g., Strominger, Vafa] as q ∈ central charge of SUSY algebra.
 - No q>m states possible (:: BPS bound).
 - More subtle for theories with some q ∉ central charge
- The WGC is a conjecture on the *finiteness of the # of stable* states that are <u>not</u> protected by a symmetry principle.

WGC for Axions

Axions and ALPs

The QCD axion [Wilczek, '78]; [Weinberg, '78] was introduced in the context of the Pecci-Quinn mechanism and the strong CP problem.

An axion enjoys a **perturbative shift symmetry.**

String theory has many higher-dimensional form-fields:

e.g.
$$F=\mathrm{d}A$$

3-form flux _______ 1 _____ 2-form gauge potential: gauge symmetry: $A o A+\mathrm{d}\Lambda$

Integrating the 2-form over a 2-cycle gives an *axion-like particle* (ALP):

$$a(x) \equiv \int_{\Sigma_2} A$$

The gauge symmetry becomes a **shift symmetry**, that is broken by non-perturbative (instanton) effects.

WGC and Axions

• Formulate the WGC in a duality frame where the axions and instantons turn into gauge fields and particles, e.g.

Primordial Gravitational Waves

Many experiments including BICEP/KECK, PLANCK, ACT, PolarBeaR, SPT, SPIDER, QUEIT, Clover, EBEX, QUaD, ... can potentially detect primordial B-mode at the sensitivity r~10⁻².

Further experiments, such as CMB-S4, PIXIE, LiteBIRD, DECIGO, Ali, ... may improve further the sensitivity to eventually reach $r \sim 10^{-3}$.

B-mode and Inflation

If primordial B-mode is detected, natural interpretations:

Inflation took place at an energy scale around the GUT scale

$$E_{\rm inf} \simeq 0.75 \times \left(\frac{r}{0.1}\right)^{1/4} \times 10^{-2} M_{\rm Pl}$$

The inflaton field excursion was super-Planckian

$$\Delta\phi\gtrsim \left(rac{r}{0.01}
ight)^{1/2}M_{\mathrm{Pl}}$$
 Lyth '96

Great news for string theory due to strong UV sensitivity!

Large field inflation and UV Sensitivity

UV sensitivity of large field inflation:

Natural Inflation [Freese, Frieman, Olinto]

Pseudo-Nambu-Goldstone bosons are natural inflaton candidates.

Natural Inflation [Freese, Frieman, Olinto]

Pseudo-Nambu-Goldstone bosons are natural inflaton candidates.

Natural Inflation [Freese, Frieman, Olinto]

Pseudo-Nambu-Goldstone bosons are natural inflaton candidates.

Natural Inflation [Freese, Frieman, Olinto]

Pseudo-Nambu-Goldstone bosons are natural inflaton candidates.

The WGC implies that these conditions cannot be *simultaneously* satisfied.

WGC and Multi-Axion Inflation

- Thorough searches for transplanckian axions in the string landscape have not been successful. Banks et al. '03 ...
- Models with multiple axions (e.g., N-flation, KNP-alignment) have been proposed but they do not satisfy the convex hull condition [Brown, Cottrell, GS, Soler];[Cheung, Remmen]

WGC for the QCD Axion

The QCD instanton action

 $S_{\rm QCD} = 4 \ln M_* / \Lambda_{\rm QCD} \approx 160$, where $M_* = UV$ scale, e.g., M_{GUT}

- The WGC implies a bound: $f_{\rm QCD} \lesssim 10^{16} \ {\rm GeV}$
- While weaker than the commonly quoted **cosmological bound**:

 $f_{\rm QCD} < 10^{12} {
m GeV}$

scenarios that allow larger $f_{\rm QCD}$ have been proposed, e.g. [Wilczek, '04]

- QCD axion with decay constants above the GUT scale can be tested:
 - laboratory searches e.g., ABRACADABRA
 - **gravitational wave observatory** e.g., LIGO (via black hole superradiance, [Arvanitaki, Dimopoulos, Dubovsky, Kaloper, March-Russell, '09])

WGC and Particle Physics

The Standard Model in the Deep IR

- The deep IR of the SM, below the electron mass scale, is simple:
 - **Bosonic dof:** photon (2) and graviton (2)
 - Fermionic dof: v's (6 or 12 for Majorana/Dirac v's)
- The mass scale of neutrinos:

$$m_{\nu} \simeq 10^{-1} - 10^{-2} eV$$

• The only other known IR scale is the **cosmological constant**:

$$\Lambda \simeq 3.25 \times 10^{-11} eV^4 = (0.24 \times 10^{-2} eV)^4$$

• This coincidence (?) has been a source of inspiration/speculations:

$$\Lambda \simeq m_{\nu}^4$$

WGC for Branes

• We have seen the applications of the WGC to particles (and instantons). Analogously, the WGC for branes is:

"
$$T_p \le Q_p$$
"

- A stronger form [Ooguri,Vafa, '16]: this bound is saturated only for a BPS state in a SUSY theory.
- A corollary of this strong form: non-SUSY AdS vacua supported by fluxes are unstable.
- In AdS space, a brane with T < Q leads to an instability (AdS fragmentation) [Maldacena, Michelson, Strominger, '99].
- This brane gets nucleated and expands. It reaches the boundary of AdS within a finite time and dilute the flux.

AdS Instability

• Instability if there exists a T<Q brane (bubble wall) in AdS:

• A stronger form of the Ooguri-Vafa conjecture:

"all non-SUSY AdS (in theories whose low energy description is Einstein gravity coupled to a finite # of fields) are unstable"

• How do we test this conjecture?

AdS Instability

• Instability if there exists a T<Q brane (bubble wall) in AdS:

• A stronger form of the Ooguri-Vafa conjecture:

"all non-SUSY AdS (in theories whose low energy description is Einstein gravity coupled to a finite # of fields) are unstable"

How do we test this conjecture?

The Higgs Potential

 After the Higgs discovery, we know that there is an additional Higgs vacuum at high scale, other than the EW vacuum:

- This high scale vacuum can be AdS₄, M₄, or dS₄ depending on the top quark mass and the higher-dimensional operators.
- Applying this conjecture to the SM landscape, we can constrain the top mass, Higgs potential, and BSM physics. [Hamada, GS].

Standard Model Landscape

- Upon compactification, the SM gives rise to a rich landscape of 3d vacua [Arkani-Hamed, Dubovsky, SticSlis, Villadoro].
- A competition between $A_{R^2}^{2\pi n^3 \Lambda}$ A_{R

 The more massive the neutrinos, the deeper the AdS minimum. Barring the potential instability of the AdS vacuum [Hamada, GS], the WGC puts a bound on the neutrino mass and type.

Summary of Results

[Hamada, GS]

 Compactify the SM on S¹ and T², starting from both the electroweak vacuum and the high scale vacuum, with general b.c. and WL.

	model	AdS	flat	dS
	U(1), neutral	$\Lambda_4 \lesssim 10^{-2.8} M_e^4$	$\Lambda_4 \simeq 10^{-2.8} M_e^4$	$10^{-2.8} M_e^4 \lesssim \Lambda_4 \lesssim 10^{-2.6} M_e^4$
S^1	U(1), charged	_	_	_
	SM, ν_M	always	_	_
	SM, ν_D , NH	$8.4 \mathrm{meV} \lesssim m_{\nu,\mathrm{lightest}}$	$m_{\nu,\text{lightest}} \simeq 8.4 \mathrm{meV}$	$7.3 \mathrm{meV} \lesssim m_{\nu,\mathrm{lightest}} \lesssim 8.4 \mathrm{meV}$
	SM, ν_D , IH	$3.1 \mathrm{meV} \lesssim m_{\nu,\mathrm{lightest}}$	$m_{\nu,\text{lightest}} \simeq 3.1 \mathrm{meV}$	$2.5 \mathrm{meV} \lesssim m_{\nu,\mathrm{lightest}} \lesssim 3.1 \mathrm{meV}$
	SM, ν_M , high scale		_	_
	SM, ν_D , high scale	$\Lambda_4 \ll (\text{neutrino mass})^4$	_	_
	axion	$\Lambda_4 < 0$	_	_
T^2	U(1), neutral	$\Lambda_4 \lesssim 10^{-2.1} M_e^4$	$\Lambda_4 \simeq 10^{-2.1} M_e^4$	$10^{-2.5} M_e^4 \lesssim \Lambda_4 \lesssim 10^{-2.1} M_e^4$
	U(1), charged	_	_	_
	SM, ν_M	always	_	_
	SM, ν_D, NH	$4.5 \mathrm{meV} \lesssim m_{\nu,\mathrm{lightest}}$	$m_{\nu,\text{lightest}} \simeq 4.5 \mathrm{meV}$	$4.5 \mathrm{meV} \lesssim m_{\nu,\mathrm{lightest}} \lesssim 6.5 \mathrm{meV}$
	SM, ν_D , IH	$1.1 \mathrm{meV} \lesssim m_{\nu,\mathrm{lightest}}$	$m_{\nu,\text{lightest}} \simeq 1.1 \mathrm{meV}$	$1.1 \mathrm{meV} \lesssim m_{\nu,\mathrm{lightest}} \lesssim 1.55 \mathrm{meV}$
	axion	$\Lambda_4 < 0$	_	_

• Can avoid AdS vacua if neutrinos are Dirac w/ the lightest neutrino mass $\leq O(1-10)$ meV. (also [Ibanez, Martin-Lozano, Valenzuela]).

Evidences for the WGC

Evidences for the Weak Gravity Conjecture

Several lines of argument have been taken (so far):

- Holography [Nakayama, Nomura, '15];[Harlow, '15];[Benjamin, Dyer, Fitzpatrick, Kachru, '16];[Montero, GS, Soler, '16]
- Cosmic Censorship [Horowitz, Santos, Way, '16];[Cottrell, GS, Soler, '16];[Crisford, Horowitz, Santos, '17]
- Entropy considerations [Cottrell, GS, Soler, '16] (note however unjustified claims in [Fisher, Mogni, '17]; [Cheung, Liu, Remmen, '18]).
- IR Consistencies (unitarity & causality) [Cheung, Remmen, '14] [Andriolo, Junghans, Noumi, GS,'18].

Evidences for *stronger* versions of the WGC:

- Consistencies with T-duality [Brown, Cottrell, GS, Soler, '15] and dimensional reduction [Heidenreich, Reece, Rudelius '15].
- Modular invariance + charge quantization suggest a sub-lattice WGC [Montero, GS, Soler, '16] (see also [Heidenreich, Reece, Rudelius '16])

WGC and Blackhole Entropy

Entropy Corrections

- We computed loop corrections to the entropy of extremal blackholes using Sen's entropy functional formalism [Cottrell, GS, Soler, '16].
- While corrections from neutral particles have been well studied (loops of massless particles give log (A) corrections to BH entropy), we found new features when charged particles are integrated out.
- Fermion spectral density in AdS₂ x S₂ is divergent for:

Energy $\sim \frac{\lambda}{a} = \sqrt{2}qM_P$ Magnetic WGC!

- The entropy corrections formulae used in [Fisher, Mogni, '17] cannot be applied to macroscopic black holes, nor away from extremality, which is where conflicts with the WGC were argued to arise.
- [Cheung, Liu, Remmen, '18] made a connection between the WGC and the positivity of entropy corrections. It is not known, however, if the latter follows from some fundamental consistency conditions.

WGC and Positivity Bounds

Einstein-Maxwell + massive charged particles

integrate out matters

IR effective theory of photon & graviton

Positivity of EFT coefficients follow from unitary, causality, and analyticity of scattering amplitudes.

Q. What does the positivity of this EFT imply?

1-loop effective action for photon & graviton

$$\mathcal{L}_{\text{eff}} = \frac{M_{\text{Pl}}^2}{2} R - \frac{1}{4} F_{\mu\nu}^2 + \alpha_1 (F_{\mu\nu} F^{\mu\nu})^2 + \alpha_2 (F_{\mu\nu} \tilde{F}^{\mu\nu})^2 + \alpha_3 F_{\mu\nu} F_{\rho\sigma} W^{\mu\nu\rho\sigma}$$

$$\alpha_i = \underbrace{\underset{g}{\overset{g}{\longrightarrow}}}_{F} \underbrace{\underset{g}{\overset{g}{\longrightarrow}}}_{F} \underbrace{\mathcal{O}(g^2) + \mathcal{O}(g^0)}_{\text{gravitational effects}}$$

- Cheung-Remmen found positivity implies $z^4 - z^2 + \gamma \ge 0$ $\label{eq:constraint} \divideontimes z = \frac{qg}{m/M_{\rm Pl}} \mbox{, } \gamma \mbox{ is a UV sensitive } \mathcal{O}(z^0) \mbox{ coefficient}$ (free parameter in the EFT framework) Positivity of photon-graviton EFT implies z⁴ - z² + γ ≥ 0
→ at lest one of the following two should be satisfied
1) WGC type lower bound on charge-to-mass ratio
in particular when γ = 0, WGC z² ≥ 1 is reproduced!
2) not so small value of UV sensitive parameter γ > 0

In [Andriolo, Junghans, Noumi, GS], we discussed

- multiple U(1)'s
- implications for KK reduction

and found qualitatively new features.

Multiple U(1)'s

for example, let us consider $U(1)_1 imes U(1)_2$

a new ingredient is positivity of $\gamma_1 + \gamma_2
ightarrow \gamma_1 + \gamma_2$

$$\lim \longrightarrow 0 \quad \text{implies} \quad z_1^2 z_2^2 - z_1^2 - z_2^2 \ge 0$$

- $z_i = q_i/m$ is the charge-to-mass ratio for each U(1)

- we set $\mathcal{O}(z^0)=0$ for illustration (same as r = 0 before)

the punchline here:

positivity bound cannot be satisfied unless $z_1^2 z_2^2 \neq 0$ \rightarrow requires existence of a bifundamental particle!

Implications for KK reduction

S^1 compactify d+1 dim Einstein-Maxwell with single U(1) into d dim Einstein-Maxwell with $U(1) \times U(1)_{\rm KK}$

d+1 dim charged particle (q,m)

 \rightarrow KK tower with the charged-to-mass ratios

$$(z, z_{\rm KK}) = \left(\frac{q}{\sqrt{m^2 + n^2 m_{\rm KK}^2}}, \frac{n}{\sqrt{(m/m_{\rm KK})^2 + n^2}}\right)$$

in the small radius limit $m_{\rm KK} \to \infty$, the lowest mode (n = 0): $(z, z_{\rm KK}) = (q/m, 0)$ KK modes (n \neq 0): $(z, z_{\rm KK}) \simeq (0, 1)$

% no bifundamentals \rightarrow positivity bound generically

<u>d+1 dim</u>

charged particles

labeled by
$$\ell = 1, 2, ...$$

 $(q, m) = (\ell q_*, \ell m_*)$

U(1)

s.t.
$$z_* = \frac{q_*}{m_*} = \mathcal{O}(1)$$

<u>d+1 dim</u>

charged particles

labeled by
$$\ell = 1, 2, \ldots$$

$$(q,m) = (\ell q_*, \ell m_*)$$

s.t.
$$z_* = \frac{q_*}{m_*} = \mathcal{O}(1)$$

d dim charged particles

$$(z, z_{\rm KK}) = \left(\frac{\ell z_*}{\sqrt{\ell^2 (m_*/m_{\rm KK})^2 + n^2}}, \frac{n}{\sqrt{\ell^2 (m_*/m_{\rm KK})^2 + n^2}}\right)$$

d dim charged particles

$$(z, z_{\rm KK}) = \left(\frac{\ell z_*}{\sqrt{\ell^2 (m_*/m_{\rm KK})^2 + n^2}}, \frac{n}{\sqrt{\ell^2 (m_*/m_{\rm KK})^2 + n^2}}\right)$$

d dim charged particles

$$(z, z_{\rm KK}) = \left(\frac{\ell z_*}{\sqrt{\ell^2 (m_*/m_{\rm KK})^2 + n^2}}, \frac{n}{\sqrt{\ell^2 (m_*/m_{\rm KK})^2 + n^2}}\right)$$

Tower WGC

[Andriolo, Junghans, Noumi, GS]

Consistency with KK reduction seems to imply a tower of

d+1 dim U(1) charged particles

→ Tower Weak Gravity Conjecture!

X a similar "(sub)lattice WGC" was proposed based on

modular invariance or holography

[Montero, GS, Soler, '16];[Heidenreich, Reece, Rudelius, '16]

Conclusions

Conclusions

- Swampland conjectures have a variety of interesting applications in cosmology and particle physics.
- The WGC when applied to ALPs constrains **inflationary B-modes**; when applied to the **QCD axion** implies $f_{\text{QCD}} \leq 10^{16} \text{ GeV}$ which can be falsified by **laboratory axion searches** or **GW detectors**.
- The WGC offers interesting perspectives on how ∧ and the neutrino masses are linked.
- Further evidences for the WGC based on entropy considerations and IR consistencies.

Conclusions

- Swampland conjectures have a variety of interesting applications in cosmology and particle physics.
- The WGC when applied to ALPs constrains inflationary B-modes; when applied to the QCD axion implies $f_{\rm QCD} \lesssim 10^{16} \, {\rm GeV}$ which can be falsified by laboratory axion searches or GW detectors.
- The WGC offers interesting perspectives on how ∧ and the neutrino masses are linked.
- Further evidences for the WGC based on entropy considerations and IR consistencies.