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Introduction

In the world-sheet theory of strings, scattering amplitudes are
calculated from the world-sheet path integral, and the
integration over the moduli space of Riemann surfaces is crucial
for ensuring the decoupling of unphysical degrees of freedom.

In string field theory, actions are constructed from
spacetime gauge symmetries as the first principle. The
world-sheet path integral is reproduced from propagators and
interaction vertices in string field theory, as in ordinary QFTs.

We now have gauge-invariant actions for open superstring field
theory including both the NS sector and the Ramond sector. In
this talk, calculations of scattering amplitudes which involve
spacetime fermions will be presented.



Open bosonic string field theory

S = −1

2
⟨⟨Ψ, QΨ ⟩⟩ − g

3
⟨⟨Ψ, Ψ ∗Ψ ⟩⟩

Ψ : string field (Grassmann odd)

Q : BRST charge

⟨⟨ , ⟩⟩ : BPZ inner product

A ∗B : star product

The star product is non-commutative and associative:

A ∗B ̸= B ∗A , A ∗ (B ∗ C) = (A ∗B) ∗ C .



The action

S = −1

2
⟨⟨Ψ, QΨ ⟩⟩ − g

3
⟨⟨Ψ, Ψ ∗Ψ ⟩⟩

is invariant under the transformation

δΨ = QΛ + g (Ψ ∗ Λ− Λ ∗Ψ) .

The gauge invariance follows from

Q (A ∗B) = QA ∗B + (−1)|A|A ∗QB ,

Q2 = 0 ,

⟨⟨A, B ⟩⟩ = (−1)|A|·|B|⟨⟨B, A ⟩⟩ ,
⟨⟨QA, B ⟩⟩ = −(−1)|A|⟨⟨A, QB ⟩⟩ ,
⟨⟨A, B ∗ C ⟩⟩ = ⟨⟨A ∗B, C ⟩⟩ ,
A ∗ (B ∗ C) = (A ∗B) ∗ C .



We impose Siegel gauge condition:

b0Ψ = 0 .

Then the propagator is calculated as

|Ψ⟩⟩⟨⟨Ψ| = b0
L0

.



The four-point amplitude in open bosonic string field theory is
calculated from Feynman diagrams with two cubic vertices and
one propagator.

A(s) = ⟨⟨ΨA ∗ΨB ,
b0
L0

(ΨC ∗ΨD ) ⟩⟩

A(t) = ⟨⟨ΨB ∗ΨC ,
b0
L0

(ΨD ∗ΨA ) ⟩⟩

s-channel! t-channel!

Bosonic modulus!



Open bosonic string field theory was constructed according to
the gauge principle, and the scattering amplitudes in the
world-sheet path integral are correctly reproduced with the
propagator and cubic vertex alone.

But the bosonic string contains the tachyon in both the open
string channel and the closed string channel.

How about the construction of open superstring field theory?



Gauge-invariant actions including the Ramond sector were
constructed. [Kunitomo-Okawa (2015)] [Sen (2015)]

[Erler-Okawa-Takezaki(2016)] [Konopka-Sachs (2016)]

In the approach in [Kunitomo-Okawa (2015)], the Ramond string
field in the small Hilbert space is combined with the
Berkovits formulation for the NS sector in the large Hilbert
space.



We regard Ramond string fields characterized by the restriction

XYΨ = Ψ

as fundamental. Here,

X = δ(β0)G0 + δ′(β0) b0 , Y = −c0 δ
′(γ0) ,

and an appropriate inner product for the kinetic term of the
Ramond sector is given by

S(0) = −1

2
⟨⟨Ψ, YQΨ ⟩⟩ .

Cf. The operator X satisfies

XYX = X , X = {Q, Ξ } , Ξ = Θ(β0) ,

and Ξ satisfies
{ η0, Ξ } = 1 , Ξ2 = 0 .



The gauge-invariant action is written in a closed form.

S = −1

2
⟨⟨Ψ, YQΨ ⟩⟩ −

∫ 1

0
dt ⟨At(t), QAη(t) + (F (t)Ψ )2 ⟩ ,

where

At(t) = eϕ(t) ∂te
−ϕ(t), Aη(t) = eϕ(t) η0e

−ϕ(t),

F (t)Ψ = Ψ+ Ξ{Aη(t), Ψ }+ Ξ{Aη(t), Ξ{Aη(t), Ψ }}+ · · · .

ϕ : NS string field in the large Hilbert space
⟨ , ⟩ : inner product in the large Hilbert space

⟨ ξ0A, B ⟩ = ⟨⟨A, B ⟩⟩



In the complemental approach for open superstring field theory
based on an algebraic structure known as A∞ structure, a
gauge-invariant action for open bosonic string field theory, for
example, can be constructed with a set of interaction vertices

S =
∑ 1

n!
⟨⟨Ψ, Vn(Ψ, · · · , Ψ︸ ︷︷ ︸

n−1

) ⟩⟩

that satisfies the A∞ relations,

QA1 = 0

QV2(A1, A2)− V2(QA1, A2)− (−1)|A1|V2(A1, QA2) = 0

QV3(A1, A2, A3)− V2(V2(A1, A2), A3) + V2(A1, V2(A2, A3))

+ V3(QA1, A2, A3) + (−1)|A1|V3(A1, QA2, A3)

+ (−1)|A1|+|A2|V3(A1, A2, QA3) = 0



WZW-like  
[Berkovits (1995)] 

NS !

NS+R! WZW-based 
[Kunitomo-Okawa (2015)]!

structure 
[Erler-Konopka-Sachs (2013)] 

A∞

structure 
[Erler-Okawa-Takezaki (2016)] 

A∞

Large Hilbert space! Small Hilbert space!

Gauge fixing!

Field redefinition!

Quantization           

Explicit vertices  ! Recursion relation!

Complicated! Straightforward

Just expand a closed form

S-matrix  ! Explicit calculation Mathematical proof!



The A∞ structure of open string field theory in the small
Hilbert space is closely related to the decomposition of moduli
space of Riemann surfaces. It also makes the Batalin-Vilkovisky
quantization of open string field theory straightforward.

On the other hand, use of the large Hilbert space obscures the
relation to the supermoduli space, and the Batalin-Vilkovisky
quantization of the Berkovits formulation seems to be
formidably complicated.

It is generally believed in the framework of string field theory
that the extension from a free theory to an interacting theory is
unique up to field redefinition if the gauge invariance in the free
theory is nonlinearly extended and if the interacting theory is
invariant under the nonlinearly extended gauge transformation.



We do not have sufficient understandings as to why the use of
large Hilbert space is so effective that we can have closed-form
expressions for gauge-invariant actions for string field theory.

Our motivation for the calculations is not only to confirm
the consistency but also to see how the correct results are
reproduced.

In the rest of this talk, I would like to elucidate how
gauge-invariant actions in OSFT describe the moduli space
of disks.

Our calculation is a generalization of that for Berkovits
formulation in the NS sector[Iimori-Noumi-Okawa-Torii (2013)],
and we incorporated the contributions from the Ramond sector.



Fermion scattering amplitudes

In the world-sheet theory, the correct four-point scattering
amplitude is given by

AWS
FFBB=⟨⟨ΨA ∗ΨB ,

b0
L0

(X0ΦC ∗ΦD)⟩⟩+⟨⟨ΨB ∗X0ΦC ,
b0
L0

(ΦD ∗ΨA)⟩⟩,

#pic(Φ ) = −1 , #pic(Ψ ) = −1

2
,

#(even moduli) = nNS + nR − 3 (= 1) ,

#(odd moduli) = #(PCO X) = nNS +
nR

2
− 2 (= 1) .

!!!"#!

!"#!



Now we calculate the propagators. We introduce a source J and
add a source term to the kinetic term as

S
(0)
NS [J ] = −1

2
⟨ϕ, Qη0ϕ ⟩+ ⟨ϕ, J ⟩ .

The equation of motion is

Qη0ϕ = J ,

and, under the gauge conditions b0ϕ = 0 and ξ0ϕ = 0, the
solution to the equation of motion is

ϕ =
ξ0b0
L0

J .

Evaluating the kinetic term for this solution, we find

S
(0)
NS [J ] = −1

2
⟨ J, ξ0b0

L0
J ⟩ .

Therefore the propagator is given by

|ϕ⟩⟨ϕ| = ξ0b0
L0

|Φ⟩⟩⟨⟨Φ| = b0
L0



We introduce a source J and add a source term to the kinetic
term as

S
(0)
R [J ] = −1

2
⟨⟨Ψ, YQΨ ⟩⟩+ ⟨⟨Ψ, J ⟩⟩ .

The equation of motion is

YQΨ = J , QΨ = XJ

and, under the gauge conditions b0Ψ = 0 , the solution to the
equation of motion is

Ψ =
b0X

L0
J .

Evaluating the kinetic term for this solution, we find

S
(0)
NS [J ] =

1

2
⟨⟨J, b0X

L0
J ⟩⟩ .

Therefore the propagator is given by

|Ψ⟩⟩⟨⟨Ψ| = b0X

L0
.



In the Kunitomo-Okawa construction,

PNS ∼ b0
L0

, PR ∼ b0X

L0
,

where X is a PCO-like operator used to characterize the
Ramond spectrum, and

SBFF = −⟨ϕ, Ψ ∗Ψ ⟩ .

SBBB =
g

3!

⟨
ϕ, (Qϕ ∗ η0ϕ− η0ϕ ∗Qϕ )

⟩
.



In the Kunitomo-Okawa construction,

PNS ∼ b0
L0

, PR ∼ b0X

L0
,

where X is a PCO-like operator used to characterize the
Ramond spectrum, and

!!SBBB ∼

SBFF ∼

picture-changing operator X0"!



From Feynman diagrams with one propagator and two cubic
vertices, we obtain

A(s)
FFBB =

1

2
⟨⟨ΨAΨB

b0
L0

(X0ΦC ΦD +ΦC X0ΦD ) ⟩⟩ ,

A(t)
FFBB = ⟨⟨ΨB ΦC

b0X

L0
ΦD ΨA ⟩⟩ .

In other words, the assignment of the picture-changing operator
is different between the s-channel and the t-channel:

!!A
(s)
FFBB

A
(t)
FFBB

"!

"!



Bosonic moduli

The bosonic modulus is correctly covered by
Feynman diagrams with one propagator and two cubic vertices.

s-channel! t-channel!

Bosonic modulus!

Supermoduli

The wrong assignment of PCO’s is interpreted as wrong
integration over the supermoduli space.

Bosonic modulus!

Supermoduli integration!



We will use the following relations:

X0 = {Q, ξ0 } X = {Q, Ξ }

X0Φa = {Q, ξ0 }Φa = Qξ0Φa ( a = A,B,C,D )

⟨⟨A, B ⟩⟩ = ⟨ ξ0A, B ⟩ ⟨⟨A, B ⟩⟩ = ⟨ΞA, B ⟩

{
Q,

b0
L0

}
= 1

Q(A ∗B) = QA ∗B + (−1)|A|A ∗QB

η0(A ∗B) = η0A ∗B + (−1)|A|A ∗ η0B

{ η0, ξ0 } = 1 { η0, Ξ } = 1



A(s)
FFBB =

1

2
⟨⟨ΨAΨB

b0
L0

(X0ΦC ΦD ) ⟩⟩+1

2
⟨⟨ΨAΨB

b0
L0

(ΦC X0ΦD︸ ︷︷ ︸) ⟩⟩ .

⟨⟨ΨAΨB
b0
L0

(ΦC X0ΦD ) ⟩⟩

= −⟨ΨAΨB
b0
L0

( ξ0ΦC Qξ0ΦD ) ⟩
�� ��Uplift to the large Hilbert space

=︸︷︷︸−⟨ΨAΨB
b0
L0

Q ( ξ0ΦC ξ0ΦD ) ⟩+ ⟨ΨAΨB
b0
L0

(Qξ0ΦC ξ0ΦD ) ⟩�� ��Integration by parts of Q

= −⟨ΨAΨB ( ξ0ΦC ξ0ΦD ) ⟩+ ⟨ΨAΨB
b0
L0

(X0ΦC ξ0ΦD ) ⟩

= −⟨ΨAΨB ( ξ0ΦC ξ0ΦD ) ⟩+ ⟨⟨ΨAΨB
b0
L0

(X0ΦC ΦD ) ⟩⟩



A(s)
FFBB =

1

2
⟨⟨ΨAΨB

b0
L0

(X0ΦC ΦD ) ⟩⟩+1

2
⟨⟨ΨAΨB

b0
L0

(ΦC X0ΦD︸ ︷︷ ︸) ⟩⟩ .

⟨⟨ΨAΨB
b0
L0

(ΦC X0ΦD ) ⟩⟩

= −⟨ΨAΨB
b0
L0

( ξ0ΦC Qξ0ΦD ) ⟩
�� ��Uplift to the large Hilbert space

=︸︷︷︸−⟨ΨAΨB
b0
L0

Q ( ξ0ΦC ξ0ΦD ) ⟩+ ⟨ΨAΨB
b0
L0

(Qξ0ΦC ξ0ΦD ) ⟩�� ��Integration by parts of Q

= −⟨ΨAΨB ( ξ0ΦC ξ0ΦD ) ⟩+ ⟨ΨAΨB
b0
L0

(X0ΦC ξ0ΦD ) ⟩

= −⟨ΨAΨB ( ξ0ΦC ξ0ΦD ) ⟩+ ⟨⟨ΨAΨB
b0
L0

(X0ΦC ΦD ) ⟩⟩



A(s)
FFBB =

1

2
⟨⟨ΨAΨB

b0
L0

(X0ΦC ΦD ) ⟩⟩+1

2
⟨⟨ΨAΨB

b0
L0

(ΦC X0ΦD︸ ︷︷ ︸) ⟩⟩ .

⟨⟨ΨAΨB
b0
L0

(ΦC X0ΦD ) ⟩⟩

= −⟨ΨAΨB
b0
L0

( ξ0ΦC Qξ0ΦD ) ⟩
�� ��Uplift to the large Hilbert space

=︸︷︷︸−⟨ΨAΨB
b0
L0

Q ( ξ0ΦC ξ0ΦD ) ⟩+ ⟨ΨAΨB
b0
L0

(Qξ0ΦC ξ0ΦD ) ⟩�� ��Integration by parts of Q

= −⟨ΨAΨB ( ξ0ΦC ξ0ΦD ) ⟩+ ⟨ΨAΨB
b0
L0

(X0ΦC ξ0ΦD ) ⟩

= −⟨ΨAΨB ( ξ0ΦC ξ0ΦD ) ⟩+ ⟨⟨ΨAΨB
b0
L0

(X0ΦC ΦD ) ⟩⟩



We will use the following relations:

X0 = {Q, ξ0 } X = {Q, Ξ }

X0Φa = {Q, ξ0 }Φa = Qξ0Φa ( a = A,B,C,D )

⟨⟨A, B ⟩⟩ = ⟨ ξ0A, B ⟩ ⟨⟨A, B ⟩⟩ = ⟨ΞA, B ⟩

{
Q,

b0
L0

}
= 1

Q(A ∗B) = QA ∗B + (−1)|A|A ∗QB

η0(A ∗B) = η0A ∗B + (−1)|A|A ∗ η0B

{ η0, ξ0 } = 1 { η0, Ξ } = 1



Similarly, for the t-channel contribution

A(t)
FFBB = ⟨⟨ΨB ΦC

b0X

L0
ΦD ΨA ⟩⟩ ,

we rewrite it as

⟨⟨ΨB ΦC
b0X

L0
ΦD ΨA ⟩⟩

= −⟨ΨB ξ0ΦC
b0{Q, Ξ }

L0
ΦD ΨA ⟩

�� ��Uplift to the large Hilbert space

=︸︷︷︸−⟨ΨB ξ0ΦC Ξ (ΦD ΨA ) ⟩ − ⟨ΨB Qξ0ΦC
b0Ξ

L0
ΦD ΨA ⟩�� ��Integration by parts of Q

= −⟨ΨB ξ0ΦC Ξ (ΦD ΨA ) ⟩+ ⟨⟨ΨB X0ΦC
b0
L0

ΦD ΨA ⟩⟩



We found that

∆AFFBB ≡ AFFBB −AWS
FFBB

= − 1

2
⟨ΨAΨB ( ξ0ΦC ξ0ΦD ) ⟩ − ⟨ΨB ξ0ΦC Ξ (ΦD ΨA ) ⟩ .

These contributions have appeared as surface terms of
bosonic moduli integrations, so that they are localized at
the boundary of the bosonic moduli regions.

s-channel! t-channel!

Bosonic modulus!



Now let us include contributions from a Feynman diagram
without propagators made from the quartic interaction SFFBB.

A(4)
FFBB = − 1

2
⟨ ξ0ΦD ΨA Ξ (ΨB ΦC ) ⟩+ 1

2
⟨ΨB ξ0ΦC Ξ (ΦD ΨA ) ⟩ .

( SFFBB is required from the spacetime gauge invariance. )



We will use the following relations:

X0 = {Q, ξ0 } X = {Q, Ξ }

X0Φa = {Q, ξ0 }Φa = Qξ0Φa ( a = A,B,C,D )

⟨⟨A, B ⟩⟩ = ⟨ ξ0A, B ⟩ ⟨⟨A, B ⟩⟩ = ⟨ΞA, B ⟩

{
Q,

b0
L0

}
= 1

Q(A ∗B) = QA ∗B + (−1)|A|A ∗QB

η0(A ∗B) = η0A ∗B + (−1)|A|A ∗ η0B

{ η0, ξ0 } = 1 { η0, Ξ } = 1



We make ξ0 assigned at ΦC (the target state) and eventually
find

A(4)
FFBB = −∆AFFBB ,

so that
AWS

FFBB = A(s)
FFBB +A(t)

FFBB +A(4)
FFBB .



Summary

s-channel! t-channel!

Bosonic modulus!

Quartic interaction!

The quartic interaction implements a vertical integration
( Cf. [Sen-Witten (2015)] ) .

A! D!

C!B!

A! D!

C!B!

A! D!

C!B!

A! D!

C!B!



Comments

Generalization to Sen’s formulation
We can regard our calculation as one for the gauge-invariant
formulation with constraints on the Ramond string field,

S
(0)
R = −1

2
⟨⟨Ψ, YQΨ ⟩⟩

or one for a gauge-invariant formulation with a spurious free
field developed by Sen,

S
(0)
R =

1

2
⟨⟨ Ψ̃, QX0Ψ̃ ⟩⟩ − ⟨⟨ Ψ̃, QΨ ⟩⟩ ,

from which the propagators are calculated to give

|Ψ⟩⟩⟨⟨Ψ| = b0X0

L0
,

|Ψ⟩⟩⟨⟨Ψ̃| = b0
L0

.



Five-point amplitudes

In an alternative approach for constructing open superstring
field theory, a constraint was imposed on Ramond string field
after deriving Feynman rules from equations of motion, just as
in type IIB supergravity. [Michishita (2003)]

It was reported that the four-point amplitudes were correctly
reproduced, but the five-point amplitudes were not.

A refined set of Feynman rules was later proposed and it was
confirmed that it reproduces correct five-point amplitudes.
[Kunitomo (2014)]
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#!

$!

%!

&!

The additional terms are interpreted as boundary terms

!!

"! #$

%!

&!

FFBB
+

FFBB
+

FFBB
+

| − | |

FBFBB = 〈〈ΨAXΦB

b0

L0

ΨC

b0

L0

XΦDΦE 〉〉

!"

#!

$!

%!

&!

〉〉+〈〈XΦDΦE

b0

L0

ΨA

b0

L0

XΦBΨC 〉〉FBFBB
= 〈〈

boundary terms.

!"

#!

$!

%!

&!

!"

#!

$!

%!

&!

!!

"! #$

%!

&!

FFBB
+

FFBB
+

FFBB
+



Conclusions and Future prospects

We have decoded the relation between the supermoduli space
of disks and the spacetime gauge symmetry in open
superstring field theory.

Issues of covering the supermoduli space at the one-loop level
are closely related to the question whether open superstring
field theory is consistent without closed-string degrees of
freedom or not.

We hope that our analysis provide important data for
developing open superstring field theory at the quantum level.



Thank you.


