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Formulations for open superstring field theory

The Berkovits formulation [Berkovits 1995]

The action has Wess-Zumino-Witten-like gauge invariance.

→ Ramond extension: [Kunitomo, Okawa 2015]

Homotopy algebra based construction [Erler, Konopka, Sachs 2013]

The action exhibits the A∞ structure.

→ Ramond extension: [Erler, Okawa, TT 2016], [Konopka, Sachs 2016]

Sen’s quantum BV master action [Sen 2015]

Simpler worldsheet realization of interaction terms

→ Applications to open SSFT: [Erler, Okawa, TT 2016], [Konopka, Sachs 2016]

Tomoyuki Takezaki 14 Feb, 2018 2 / 36



Open SSFT based on the covering of supermoduli space

Recently, a new approach to formulating NS sector of open superstring field
theory based on the covering of the supermoduli space of super-Riemann
surfaces was proposed [Ohmori, Okawa2017].

We extend this approach and construct a gauge-invariant action including the
Ramond sector up to quartic interactions.

Our approach is based on the covering of the supermoduli space, and our
action exhibits the A∞ structure.

We also construct an action based on the products with stubs. One of the
advantages of our construction is that incorporation of stubs is
straightforward.
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1. A∞ structure
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Witten’s open bosonic string field theory [Witten 1985]

S = − 1

2
〈Ψ, QΨ〉 − g

3
〈Ψ,Ψ ∗Ψ〉 ,

δΨ = QΛ− gΛ ∗Ψ + gΨ ∗ Λ .

The star product ∗ is non-commuttative: A ∗B 6= B ∗A,
but associative: (A ∗B) ∗ C = A ∗ (B ∗ C).

The gauge invariance follows from

〈A,B〉 = (−1)AB〈B,A〉 ,

〈QA,B〉 = − (−1)A〈A,QB〉 ,
〈A ∗B,C〉 = 〈A,B ∗ C〉 ,

Q2A = 0 ,

Q(A ∗B) = QA ∗B + (−1)AA ∗QB ,
(A ∗B) ∗ C = A ∗ (B ∗ C) .
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Actually, we can construct a gauge-invariant action based on a string product
without associative two-string product:

S = − 1

2
〈Ψ, QΨ 〉 − g

3
〈Ψ, V2(Ψ,Ψ) 〉 − g2

4
〈Ψ, V3(Ψ,Ψ,Ψ) 〉+O(g3) .

We assume V2, V3 are cyclic:

〈V2(A1, A2), A3 〉 = 〈A1, V2(A2, A3) 〉 ,
〈V3(A1, A2, A3), A4 〉 = − (−1)A1〈A1, V3(A2, A3, A4) 〉 .

The action is invariant up to O(g3) under a gauge transformation

δΨ = QΛ + gV2(Ψ,Λ)− gV2(Λ,Ψ)

+ g2V3(Ψ,Ψ,Λ)− g2V3(Ψ,Λ,Ψ) + g2V3(Λ,Ψ,Ψ) +O(g3) ,

if Q, V2, and V3 satisfy ...
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A∞ structure

0 = Q2A1

0 = QV2(A1, A2)− V2(QA1, A2)− (−1)A1V2(A1, QA2)

0 = QV3(A1, A2, A3)− V2(V2(A1, A2), A3) + V2(A1, V2(A2, A3))

+ V3(QA1, A2, A3) + (−1)A1V3(QA1, A2, A3)

+ (−1)A1+A2V3(A1, A2, QA3)

These equations are extended to higher orders, and a set of these relations is
called an A∞ structure.

The A∞ structure is closely related to the decomposition of the moduli space
of Riemann surfaces.

The quantization of string field theory based on the Batalin-Vilkovisky
formalism is straightforward if the theory has the A∞ structure.
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2. Neveu-Schwarz sector [Ohmori, Okawa 2017]
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Two-string product (NS sector)

Disks with three NS punctures have one odd modulus, and we denote it by ζ.

In [Ohmori, Okawa 2017], an integral over the odd modulus is implemented by

XN =

∫
dζdζ̃XN (ζ, ζ̃) , XN (ζ, ζ̃) = e−ζ̃β−1/2+ζG−1/2 ,

where ζ̃ is a Grassmann-even variable [Witten 2012]. In [Ohmori, Okawa 2017], the
two-string product in the following form is introduced:

V2(N1, N2) =
1

3

(
XN

?(N1 ∗N2) +XNN1 ∗N2 +N1 ∗XNN2

)
.

V2(N1, N2) realizes cyclic A∞ structure at this order, but not associative:

V2(V2(N1, N2), N3) 6= V2(N1, V2(N2, N3)) .

We need a three-string product to satisfy the 3rd order A∞ relation.
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The 3rd order A∞ relation

We define V3(N1, N2, N3) in terms of a Grassmann-odd operator Ξ:

〈N1, V3(N2, N3, N4) 〉 ≡ 〈 g1 ◦N1(0) Ξ g2 ◦N2(0) g3 ◦N3(0) g4 ◦N4(0) 〉D .

where 〈. . . 〉D is the correlation function on the disk.

Furthermore, we define Grassmann-even operators Xt, Xs by

〈N1, V2(V2(N2, N3), N4) 〉 ≡ 〈Xt g1 ◦N1(0) g2 ◦N2(0) g3 ◦N3(0) g4 ◦N4(0) 〉D ,
〈N1, V2(N2, V2(N3, N4)) 〉 ≡ 〈Xs g1 ◦N1(0) g2 ◦N2(0) g3 ◦N3(0) g4 ◦N4(0) 〉D .

In this notation, the 3rd order A∞ relation is expressed as

Q · Ξ = Xt −Xs .
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Rule of the game (NS sector)

The 3rd order A∞ relation in terms of Ξ

Q · Ξ = Xt −Xs .

We construct Ξ in the following steps:

1 define two-string product V2 (already done) ,

2 calculate Xt and Xs from the definition of V2 ,

3 pull out Q from Xt −Xs .

Since we assumed 〈V3(A1, A2, A3), A4 〉 = − (−1)A1〈A1, V3(A2, A3, A4) 〉 , the
operator Ξ must be constructed to satisfy the cyclic equation

ω ◦ Ξ = −Ξ ,

where ω(z) = eiπ/2z = iz is 90◦-rotation on disks.
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Step2: calculate Xt and Xs

We define XN [gi] for conformal transformation gi(ξ) by

XN [gi] =

∫
dζdζ̃e−ζ̃βN [gi]+ζGN [gi]

where βN [gi] and GN [gi] are pull back of β−1/2 and G−1/2 by gi. Then we can
pull out XN from each vertex operators.

For example, we find

〈XNN1, N2∗(XNN3)∗N4 〉 = 〈XN [g1]XN [g3] g1◦N1(0) g2◦N2(0) g3◦N3(0) g4◦N4(0)〉D .
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Step 2: calculate Xt and Xs (continued)

Furthermore, we introduce XN [hi] for (i = 1, 2, 3, 4) with hi(ξ)

For example, we find

〈 (XNN1), N2XN (N3N4) 〉 = 〈XN [g1]XN [h3] g1◦N1(0) g2◦N2(0) g3◦N3(0) g4◦N4(0)〉D .

Using this method, we find

Xt =
1

9

(
XN [h4] +XN [g2] +XN [g3]

)(
XN [g1] +XN [h2] +XN [g4]

)
,

Xs =
1

9

(
XN [h1] +XN [g3] +XN [g4]

)(
XN [g2] +XN [h3] +XN [g1]

)
.
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Step 3: pull out Q from Xt −Xs

It is useful to introduce the following operator:

Ξ[a, b] =

∫ 1

0

dt′
∫
dt̃′
∫
dζdζ̃ e−{Q

′,t′ζβN [a]} e−{Q
′,(1−t′)ζβN [b]} ,

where Q′ is the extended BRST operator [Witten 2012]:

Q′ = Q+ t̃′∂t′ + ζ̃∂ζ .

The operator Ξ[a, b] satisfies

Q · Ξ[a, b] = XN [a]−XN [b] .

Therefore, we can pull out Q from the difference of XN .
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In [Ohmori, Okawa 2017], an operator Ξ satisfying the 3rd order A∞ relation and
the cyclic equation was given in the following form:

Ξ =
1

18

(
Ξ[h2, h4;h3, h1] + (17 terms)

)
,

where

Ξ[a1, a2; b1, b2] =
1

2

(
Ξ[a1, b1]XN [a2] + (3 terms)

)
.

Ξ consists of an integration over one even modulus and two odd moduli.

The three-string product V3 constructed from Ξ covers the missing region of
moduli space of disks with four NS punctures.
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3. Ramond sector
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Ramond string field

For the Ramond sector, it is known that the BRST cohomology on an appropriate
subspace of the small Hilbert space reproduces the correct spectrum, and we use
the string field restricted to this subspace.

The restriction on the Ramond field is characterized by XRYRΨR = ΨR, where

XR =

∫
dζdζ̃XR(ζ, ζ̃) , XR(ζ, ζ̃) = e−ζ̃β0+ζG0 , YR = −c0δ′(γ0) .

XR commutes with Q, and XR is BPZ even: X?
R = XR. For restricted Ramond

fields R1, R2, we use the inner product in the following form:

〈R1, YRR2 〉 .
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Define Xt, Xs, and Ξ for NS/R sector

We consider two-string products V2(N1, R1), V2(R1, N1), V2(R1, R2), and
three-string products

V3(N1, N2, R1) , V3(N1, R1, N2) , V3(R1, N1, N2) ,

V3(N1, R1, R2) , V3(R1, N1, R2) , V3(R1, R2, N1) , V3(R1, R2, R3) .

We define Ξ, Xt, and Xs for NS/R sector. For example,

〈R1, YRV3(N2, R3, N4) 〉 ≡ 〈 g1 ◦R1(0) ΞRNRN g2 ◦N1(0) g3 ◦R2(0) g4 ◦N2(0) 〉D ,
〈R1, YRV2(V2(N1, R1), N2)〉 ≡ 〈 (Xt)RNRN g1 ◦R1(0) g2 ◦N1(0) g3 ◦R2(0) g4 ◦N2(0) 〉D ,
〈R1, YRV2(N1, V2(N2, N2))〉 ≡ 〈 (Xs)RNRN g1 ◦R1(0) g2 ◦N1(0) g3 ◦R2(0) g4 ◦N2(0) 〉D .
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Rule of the game (NS/R sector)

A∞ relation for V3(N1, R1, N2) in terms of ΞRNRN

Q · ΞRNRN = (Xt)RNRN − (Xs)RNRN .

We construct ΞRNRN in the following steps:

1 define the two-string products V2 for NS/R inputs,

2 calculate (Xt)RNRN and (Xs)RNRN from the definition of V2 ,

3 pull out Q from (Xt)RNRN − (Xs)RNRN .

The cyclic equation 〈V3(N1, R1, N2), R2 〉 = − (−1)N1〈N1, V3(R1, N2, R2) 〉 is
translated into

ω ◦ ΞRNRN = −ΞNRNR ,
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Step 1: define the two-string products for NS/R inputs

Let us start form the NS-R-R interaction. Since disks with two R punctures and
one NS puncture has no moduli, we can simply use the star product:

α 〈ΨN ,ΨR ∗ΨR 〉 ,

where α is non-zero constant to be determined. This term can be rewritten as

α 〈ΨN ,ΨR ∗ΨR 〉 = α 〈ΨR, YRXR(ΨN ∗ΨR) 〉 = α 〈ΨR, YRXR(ΨR ∗ΨN ) 〉 .

Motivated by this equation, we define the following two-string products:

V2(N1, R1) = XR(N1 ∗R1) ,

V2(R1, N1) = XR(R1 ∗N1) ,

V2(R1, R2) = R1 ∗R2 .

These two-string products have cyclic A∞ structure at this order, but not
associative except for V2(V2(R1, R2), R3) = V2(R1, V2(R2, R3)).
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Step 2: calculate (Xt)RNRN and (Xs)RNRN

Using the two-string products defined in the step 1, we find

〈R1, YRV2(V2(N1, R2), N2) 〉 = 〈R1, YRXR(XR(N1 ∗R2) ∗N2 ) 〉
= 〈R1, XR(N1 ∗R2) ∗N2 〉 ,

and

〈R1, YRV2(N1, V2(R2, N2)) 〉 = 〈R1, YRXR(N1 ∗XR(R2 ∗N2) ) 〉
= 〈R1, N1 ∗XR(R2 ∗N2) 〉 .

Therefore, we have

(Xt)RNRN = XR[h2], (Xs)RNRN = XR[h3] ,

where XR[hi] is pull back of XR by hi.
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Step 3: pull out Q from (Xt)RNRN − (XS)RNRN

The 3rd order A∞ relation is Q · ΞRNRN = XR[h2]−XR[h3] . We introduce

ΞRR[a, b] =

∫ 1

0
dt′
∫
dt̃′
∫
dζdζ̃ e−{Q

′,t′ζβR[a]} e−{Q
′,(1−t′)ζβR[b]} ,

which satisfies

Q · ΞRR[a, b] = XR[a]−XR[b] .

ΞRNRN = ΞRR[h2, h3] .

We can also construct ΞNRNR and show the equation ω ◦ ΞRNRN = − ΞNRNR.

Tomoyuki Takezaki 14 Feb, 2018 23 / 36



For other NS and R combination, we can show that the following ΞNNRR, . . .
satisfies the 3rd order A∞ relation and cyclic equations.

ΞRRNN =
1

3

(
ΞRN [h2, h1] + ΞRN [h2, g3] + ΞRN [h2, g4]

)
,

ΞNRRN =
1

3

(
ΞNR[g1, h3] + ΞNR[h2, h3] + ΞNR[g4, h3]

)
,

ΞRNNR =
1

3

(
ΞNR[h4, h1] + ΞNR[g2, h1] + ΞNR[g3, h1]

)
,

ΞRRNN =
1

3

(
ΞNR[h1, h2] + ΞNR[g3, h2] + ΞNR[g4, h2]

)
.

where

ΞRN [a, b] =

∫ 1

0
dt′
∫
dt̃′
∫
dζdζ̃ e−{Q

′,t′ζβR[a]} e−{Q
′,(1−t′)ζβN [b]} ,

ΞNR[a, b] =

∫ 1

0
dt′
∫
dt̃′
∫
dζdζ̃ e−{Q

′,t′ζβN [a]} e−{Q
′,(1−t′)ζβR[b]} .

The three-string products constructed from ΞRNRN , ... covers the missing
region of moduli space of disks with two NS and two R punctures.
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4. Open superstring field theory with stubs

Tomoyuki Takezaki 14 Feb, 2018 25 / 36



Open bosonic SFT with stubs - step1

We define the bosonic two-string product by attaching propagators of length w:

V w2 (A1, A2) ≡ e−wL0

(
(e−wL0A1) ∗ (e−wL0A2)

)
.

V w2 has the cyclic A∞ structure at this order, but not associative.

Let us consider V w3 . We define Bw3 ,Lwt , and Lws by

〈A1, V
w
3 (A2, A3, A4) 〉 ≡ 〈 g1 ◦A1(0)Bw3 g2 ◦A2(0) g3 ◦A3(0) g4 ◦A4(0) 〉D ,

〈A1, V
w
2 (V w2 (A2, A3), A4) 〉 ≡ 〈Lwt g1 ◦A1(0) g2 ◦A2(0) g3 ◦A3(0) g4 ◦A4(0)) 〉D ,

〈A1, V
w
2 (A2, V

w
2 (A3, A4)) 〉 ≡ 〈Lws g1 ◦A1(0) g2 ◦A2(0) g3 ◦A3(0) g4 ◦A4(0)) 〉D .
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Rule of the game (open bosonic SFT with stubs)

The 3rd order A∞ relation for V w
3 in terms of Bw3

Q · Bw3 = Lwt − Lws .

We construct Bw3 in the following steps:

1 define the two-string product V w2 (already finished),

2 calculate Lwt and Lws from the definition of V w2 ,

3 pull out Q from Lwt − Lws .

The cyclic equation for V w3 is translated into

ω ◦ Bw3 = −Bw3 .
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Step 2 & 3

Using the definition of V w2 , we have

Lwt = e−wL0[g1] e−2wL0[h2] e−wL0[g2] e−wL0[g3] e−wL0[g4] ,

Lws = e−wL0[g1] e−wL0[g2] e−2wL0[h3] e−wL0[g3] e−wL0[g4] .

We introduce an interpolation function B[a, b]:

B[a, b] =

∫ 1

0

dt

∫
dt̃
(
e{Q

′,(1−t)(−2w)b0[a]} + e{Q
′,t(−2w)b0[b]}

)
,

where t̃ is a Grassmann-odd variable, and Q′ = Q+ t̃∂t. B[a, b] satisfies

Q · B[a, b] = e−2wL0[a] − e−2wL0[b] .

Then B3 is realized in the following form:

Bw3 = B[h2, h3] e−wL0[g1] e−wL0[g2] e−wL0[g3] e−wL0[g4] .
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Rule of the game (open SSFT with stubs)

Let us consider open SSFT including the Ramond sector with stubs. We define
ΞwRNRN , (Xt)

w
RNRN , and (Xs)

w
RNRN as in the case of OSSFT without stubs.

The 3rd order A∞ relation in terms of Ξw
RNRN

Q · ΞwRNRN = (Xt)
w
RNRN − (Xs)

w
RNRN .

We construct ΞwRNRN in the following steps:

1 define the two-string products,

2 calculate (Xt)
w
RNRN and (Xs)

w
RNRN ,

3 pull out Q from (Xt)
w
RNRN − (Xs)

w
RNRN .

The cyclic equation for V3(N1, R1, N1) is translated into

ω ◦ ΞwRNRN = − ΞwNRNR .
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Step 1 & 2

We define two-string products by replacing the star product ∗ with V w2 :

V2(N1, N2) =
1

3
(X?

NV
w
2 (N1, N2) + V w2 (XNN1, N2) + V w2 (N1, XNN2)) ,

V2(N1, R1) = XRV
w
2 (N1, R1) ,

V2(R1, N1) = XRV
w
2 (R1, N1) ,

V2(R1, R2) = V w2 (R1, R2) .

Since we just switched the star product ∗ to V w2 , these two-string products have
cyclic A∞ structure at this order. Then we have

(Xt)
w
RNRN =XR[h2] e−wL0[g1] e−2wL0[h2] e−wL0[g2] e−wL0[g3] e−wL0[g4] ,

(Xs)
w
RNRN =XR[h3] e−wL0[g1] e−wL0[g2] e−2wL0[h3] e−wL0[g3] e−wL0[g4] .

Remember that XR[h2] = (Xt)RNRN , XR[h3] = (Xs)RNRN , therefore

(Xt)
w
RNRN = (Xt)RNRNLwt , (Xs)

w
RNRN = (Xs)RNRNLws .
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Step 3: pull out Q from (Xt)
w
RNRN − (Xs)

w
RNRN

(Xt)
w
RNRN − (Xs)

w
RNRN

=
(

(Xt)RNRNe
−2wL0[h2] − (Xs)RNRNe

−2wL0[h3]
)

× e−wL0[g1] e−wL0[g2] e−wL0[g3] e−wL0[g4]

=
(

(Xt)RNRN (e−2wL0[h2] − 1) + (Xt)RNRN − (Xs)RNRN + (Xs)RNRN (1− e−2wL0[h3])
)

× e−wL0[g1] e−wL0[g2] e−wL0[g3] e−wL0[g4]

We introduce

B[a, ∗] =

∫ 1

0

dt

∫
dt̃ e{Q

′,(1−t)(−2w)b0[a]} , B[∗, b] =

∫ 1

0

dt

∫
dt̃ e{Q

′,t(−2w)b0[b]} ,

which satisfy

Q · B[a, ∗] = e−2wL0[a] − 1 , Q · B[∗, b] = 1− e−2wL0[b] .
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Step 3 (continued)

Then we have

(Xt)
w
RNRN − (Xs)

w
RNRN

=
(

(Xt)RNRNQ · B[h2, ∗] +Q · ΞRNRN + (Xs)RNRNQ · B[∗, h3]
)

× e−wL0[g1] e−wL0[g2] e−wL0[g3] e−wL0[g4]

= Q ·
[ (

(Xt)RNRN B[h2, ∗] + ΞRNRN + (Xs)RNRN B[∗, h3]
)

× e−wL0[g1] e−wL0[g2] e−wL0[g3] e−wL0[g4]
]
.

Finally, we find

ΞwRNRN =
(

(Xt)RNRN B[h2, ∗] + ΞRNRN + (Xs)RNRN B[∗, h3]
)

× e−wL0[g1] e−wL0[g2] e−wL0[g3] e−wL0[g4]

We can also show that ΞwRNRN satisfies the cyclic equation:

ω ◦ ΞwRNRN = − ΞwNRNR

We can construct ΞwABCD for other NS/R combinations in the similar way.
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Illustration of Ξw
RNRN
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4. Conclusion and Future directions
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Conclusion and Future directions

Conclusion

We constructed open superstring field theory based on the supermoduli space

including the Ramond sector

with stubs

up to quartic order

Future directions

Extension to all order?

Relation to other formulations?
(especially Homotopy algebra based constructions)

Tomoyuki Takezaki 14 Feb, 2018 35 / 36



Thank you for your attention!
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∞. Back up

Tomoyuki Takezaki 14 Feb, 2018 37 / 36



ΞRNRN is cyclic

We have
ΞRNRN = ΞNRNR = ΞRR[h2, h3] .

Let us consider the cyclic equation. We find

ω ◦ ΞRNRN = ΞRR[h3, h4] = − ΞRR[h4, h3]

=− ΞRR[h2, h3] = − ΞNRNR .

Therefore, three-string products constructed from ΞRNRN and ΞNRNR has the
cyclic A∞ structure 1.

1We used antisymmetric property of ΞRR:

ΞRR[a, b] = − ΞRR[b, a] ,

and βR[h2] = βR[h4] which follows form the fact that β0 is BPZ even.

ΞRR[h2, h3] =

∫
dt′
∫
dt̃′
∫
dζdζ̃ e−{Q

′,t′ζβR[h2]} e−{Q
′,(1−t′)ζβR[h3]}
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Bw3 is cyclic

We can show that Bw3 satisfies the cyclic equation. We find

ω ◦ Bw3 = ω ◦
(
B[h2, h3]e−wL0[g1]e−wL0[g2]e−wL0[g3] e−wL0[g4]

)
= B[h3, h4] e−wL0[g2] e−wL0[g3] e−wL0[g4] e−wL0[g1]

= B[h3, h2] e−wL0[g2] e−wL0[g3] e−wL0[g4] e−wL0[g1]

= − B[h2, h3] e−wL0[g1] e−wL0[g2] e−wL0[g3] e−wL0[g4]

= − Bw3 ,

where we used B[a, b] = − B[b, a] and

b0[h1] = b0[h3], b0[h2] = b0[h4] ,

which follows from the fact that L0 is BPZ even. 2

2

B[h3, h4] =

∫ 1

0
dt

∫
dt̃
(
e{Q
′,(1−t)(−2w)b0[h3]} + e{Q

′,t(−2w)b0[h4]}
)
,
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Ξw
ABCD is cyclic

If (Xt)ABCD, (Xs)ABCD, and ΞABCD satisy

ω ◦ (Xt/s)ABCD = (Xs/t)DABC , ω ◦ ΞABCD = − ΞDABC ,

we can show that ΞwABCD satisfies the cyclic equation. We find

ω ◦ ΞwABCD = ω ◦
[(

(Xt)ABCD B[h2, ∗] + ΞABCD + (Xs)ABCD B[∗, h3]
)

× e−wL0[g1] e−wL0[g2] e−wL0[g3] e−wL0[g4]
]

=
(

(Xs)DABC B[h3, ∗]− ΞDABC + (Xt)DABC B[∗, h4]
)

× e−wL0[g2] e−wL0[g3] e−wL0[g4] e−wL0[g1]

=
(
− (Xs)DABC B[∗, h3]− ΞABCD − (Xt)DABC B[h2, ∗]

)
× e−wL0[g1] e−wL0[g2] e−wL0[g3] e−wL0[g4]

= − ΞwDABC .
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