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What is Soft Graviton Theorem ?

• We consider an S matrix involving some soft gravitons and
some finite energy particles in a theory of gravity coupled
with some arbitrary set of fields.

• The amplitude can be expanded in a power series in the
soft momenta.

• The soft graviton theorem is the statement that the first
three terms of the expansion involve the amplitude without
the soft graviton multiplied by a soft factor.

• Our goal will be to prove this statement for the leading and
the subleading terms (i.e. first two terms) of the expansion.

(Sen; Laddha, Sen; Chakrabarti, Kashyap, Sahoo, Sen, MV)



General Strategy

• We consider a theory of gravity coupled with matter fields
which possesses general coordinate invariance. We shall
not assume any details about the finite energy external states.

• However, we shall assume that the general coordinate in-
variance is not broken by the quantum effects.

• Instead of the original action of the theory, we shall work
with the general coordinate invariant 1PI effective action.

• We shall further assume that the S-matrix of the theory is
infrared finite. If this is not the case (e.g., in d ≤ 4), then our
derivation will be valid only for the tree level amplitudes.



General Strategy

• The full quantum corrected S-matrix of the theory can be
obtained by the tree diagrams computed using the 1PI ac-
tion.

• To derive the Feynman rules for the 1PI action, we first need
to gauge fix it. This requires adding a gauge fixing term.

• We shall choose a gauge fixing term which breaks the gen-
eral coordinate invariance but preserves the Lorentz invari-
ance (e.g., it could be (∂µhµν)2 = 0, where hµν describes
the gravitons).



General Strategy

• Using this gauge fixed action, one can, in principle, now
derive the Feynman rules of the theory and compute the
amplitudes involving the soft gravitons.

• However, this requires the knowledge of 1PI action explicitly
which we do not know in general. Hence, we shall proceed
in an alternative way.

• Since we only need to work with tree diagrams, any line in a
diagram (which contains some soft and some finite energy
particles) can be identified with a soft or finite energy line.

• This allows us to treat soft and finite energy gravitons as
two different particles.



General Strategy

• This means we can pretend that the gauge fixed action does
not describe the soft gravitons but only the finite energy par-
ticles.

• The soft graviton field Sµν can now be introduced by covari-
antizing the gauge fixed action with respect to the metric
ηµν + 2Sµν .

• This will mean promoting the ordinary derivatives in the ac-
tion to covariant derivatives (w.r.t. soft graviton metric) and
possibly introducing the “non-minimal” terms involving the
coupling of Riemann tensor with the finite energy fields.



General Strategy

• This procedure will generate the coupling between the soft
gravitons and the finite energy fields in a specific manner
dictated by the covariantization procedure.

• As we shall see, even though the 1PI action depends upon
the theory, the effect of covariantization (and hence the cou-
pling between soft and hard particles) can be worked out in
a universal manner.



Validity for String Theory

• In string field theories, the amplitudes are expressed as
sum over Feynman diagrams.

• We shall be making use of the Feynman diagram techniques
in our derivation.

• Hence, our results will also be valid for the amplitudes de-
rived using the string field theory, in particular, for type II
and heterotic theories.

• Moreover, when the string field theory amplitudes agree
with those derived using the 1st quantized string theory, our
results will also be valid for the 1st quantized string theory.



Validity for String Theory

• As mentioned earlier, the coupling of the soft graviton to
the rest of the fields will be determined by deforming the
background space-time by the soft graviton field.

• For our derivation to be valid for the string field theory, we
need to assume that this deformation is equivalent to a de-
formation of the underlying world-sheet conformal field the-
ory.

• This property of background independence has been proven
for the closed string field theories. (Sen, Zwiebach; Sen)



Diagrams

• We now start by describing all the diagrams involving the
soft gravitons which can be drawn using the vertices gener-
ated by the covariantization procedure.



Diagrams
(Single Soft Graviton)

• A single external graviton can attach itself either to an exter-
nal hard line of the diagram or somewhere in the interior of
the diagram. Thus, the class of diagrams which contribute
to the amplitude with one external soft graviton are

.

.ϵ 1
, p

1

.
ϵ i−1,

p i−1

. ϵi+1 , pi+1
.
ϵ

N
, p

N

.ϵi, pi .pi + k

.k.ε

.Γ(3) .Γ .
.ϵ1 , p1 .ϵN,

pN

.k.ε

.̃Γ



Diagrams
(Two Soft Gravitons)

• Two soft gravitons can appear in 6 different classes of dia-
grams (suppressing the momenta and polarizations of ex-
ternal lines)
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Diagrams
(Two Soft Gravitons)
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Leading vs. Subleading Contributions

• By looking at diagrams, we find that the pole in the soft
momenta arises when a soft graviton gets attached to an
external line.

• This happens as follows: suppose the soft graviton carry-
ing momentum k gets attached to the ith external line. The
diagram will then contain a factor of

1
(pi + k)2 + M2 =

1
(p2

i + M2) + k2 + 2pi · k

Since graviton is on-shell, we have k2 = 0. Now, the internal
line carrying momentum pi + k can represent the same par-
ticle as the line carrying the external momentum pi. In such
a case, p2

i + M2 = 0 and we get a pole in the soft momenta.



Leading vs. Subleading Contributions

• No such pole arises when the soft graviton gets attached to
an internal vertex or internal line.

• Due to this reason, the first diagram in the case of single
soft graviton and the first two diagrams in the case of two
soft gravitons start contributing at leading order.

• The leading contribution is proportional to 1
kµ

for the single
soft graviton and is proportional to 1

kµkν
for the two soft gravi-

tons.

• The contribution of the other diagrams starts at the sublead-
ing order.

• In the case of the two soft gravitons, the contribution of the
6th diagram starts at the subsubleading order.



Multiple Gravitons

• One might naively expect that as the number of soft gravi-
tons increase, we would encounter more and more vertices.

• However, it turns out that for the case of multiple soft gravi-
ton theorem upto subleading order, we don’t need any new
vertex other than Γ(3),Γ(4) and V(3).

• E.g., consider the case of 4 soft gravitons. One might ex-
pect a 5-point vertex involving 3 soft gravitons and two hard
particles as shown below

..Γ(5).Γ(3) .Γ



Multiple Gravitons

• However, we note that for the case of 4 soft gravitons, the
leading and subleading contributions will go as

∼ f1
kµkνkρkσ

+
f2

kµkνkρ

But, the above diagram involving Γ(5) will go as 1
kµkν

and
hence is subsubleading.

• We can do a detailed analysis of this and find it to be true
for the case of an arbitrary number of soft gravitons. Thus,
upto subleading order, we don’t need to worry about any
new coupling between the soft and hard particles.

(Chakrabarti, Kashyap, Sahoo, Sen, MV)



Determining Γ(3) and Γ(4)

(Covariantization Procedure)

• We now turn to the evaluation of the diagrams.

• To evaluate the diagrams, we need to first determine the
Feynman rules of the theory. In particular, we need the ex-
pression of propagators and the vertex factors Γ(3),Γ(4) and
V(3).

• The Γ(3) and Γ(4) can be obtained by covariantizing the
gauge fixed 1PI effective action with respect to one and two
soft gravitons respectively as we describe now.



Determining Γ(3) and Γ(4)

(Covariantization Procedure)

• The most general form for the quadratic part of the gauge
fixed 1PI effective action can be written as

S(2) =
1
2

∫
ddq1

(2π)d
ddq2

(2π)d (2π)
dδd(q1 + q2)Φα(q1)Kαβ(q2)Φβ(q2)

where we can choose Kαβ(q) = Kβα(−q).

• In position space, Kαβ will correspond to some differential
operator acting on the finite energy fields Φβ.

• The covariantization essentially amounts to replacing the
ordinary derivatives present in this operator into the covari-
ant derivatives.



Determining Γ(3) and Γ(4)

(Covariantization Procedure)

• We shall use the convention that all the finite energy fields
carry flat tangent space indices.

• Hence, a generic term invoving the differential operator in
position space will be of the form

∂a1 · · · ∂anΦα

where, ai are flat space vector indices and α denotes flat
space spinor or tensor index.

• The covariantization amounts to the replacement

∂a1 · · · ∂anΦα → E µ1
a1

· · ·E µn
an

Dµ1 · · ·DµnΦα



Determining Γ(3) and Γ(4)

(Covariantization Procedure)

• We shall parametrize the soft background metric as

ḡµν = ηµν + 2Sµν + 2SµρSρν + · · · ; Sµν = Sνµ , S µ
µ = 0

• This parametrization implies for the inverse vielbein

E µ
a = δ µ

a − S µ
a +

1
2

S b
a S µ

b + · · ·

• The covariant derivative is given by

DµΦα = ∂µΦα +
1
2
ωab
µ (Jab)

β
α Φβ

where (Jab)
β
α is the generator of the spin angular momen-

tum operator and the spin connection is given by

ωab
µ = ∂bS a

µ − ∂aS b
µ + · · ·



Determining Γ(3) and Γ(4)

(Covariantization Procedure)

Parametrizing soft graviton as Sµν = εµνeik·x and working in mo-
mentum space, the effect of covariantization w.r.t. a single soft
graviton produces the following coupling between the two hard
particles and one soft graviton

1
2

∫
ddq1

(2π)d
ddq2

(2π)d (2π)
dδd(q1 + q2 + k)

Φα(q1)
[
−εµνqν2

∂

∂q2µ
Kαβ(q2) +

1
2
(kbεaµ − kaεbµ)

∂

∂q2µ
Kαγ(q2)(Jab)

β
γ

−1
2
∂2Kαβ(q2)

∂q2µ∂q2ν
q2ρ(kµε ρ

ν + kνε ρ
µ − kρεµν) +O(kµkν)

]
Φβ(q2)



Determining Γ(3) and Γ(4)

(Covariantization Procedure)

Using this action, we can now read off the vertex factor Γ(3) to
be

Γ(3)αβ(ε, k; q1, q2)

=
i
2

[
− εµνqν2

∂Kαβ(q2)

∂q2µ
− εµνqν1

∂Kβα(q1)

∂q1µ

−1
2

(∂Kαγ(q2)

∂q2µ

(
Jab) β

γ
+

∂Kβγ(q1)

∂q1µ

(
Jab) α

γ

)
(ka εbµ − kb εaµ)

−1
2

(∂2Kαβ(q2)

∂q2µ∂q2ν
q2ρ +

∂2Kβα(q1)

∂q1µ∂q1ν
q1ρ

)(
kµε ρ

ν + kνε ρ
µ − kρεµν

) ]



Determining Γ(3) and Γ(4)

(Covariantization Procedure)

Following the similar procedure, the result of keeping terms upto
quadratic in the soft graviton field gives the quartic vertex

Γ(4)αβ(ε1, k1; ε2, k2; q1, q2)

= i

[
1
4
ε ν

1ρ ε2µνqµ2
∂Kαβ(q2)

∂q2ρ
+

1
4
ε ν

1ρ ε2µνqµ1
∂Kβα(q1)

∂q1ρ

+
1
4
ε ν

1µε2νρqρ2
∂Kαβ(q2)

∂q2µ
+

1
4
ε ν

1µε2νρqρ1
∂Kβα(q1)

∂q1µ

+
1
2
ε1ρµε2σνqµ2 qν2

∂2Kαβ(q2)

∂q2ρ∂q2σ
+

1
2
ε1ρµε2σνqµ1 qν1

∂2Kαβ(q1)

∂q1ρ∂q1σ

]



Three graviton vertex V(3)

• Next, we want to determine the 3 point coupling of soft
gravitons. This can be obtained by expanding the Einstein-
Hilbert action.

• The result is given by

V(3)
µν (ε1, k1, ε2, k2)

=
i
2
ε1,abε2,cd

[{
ηµνη

acηbdkρ1k2ρ − 2ηadηc
νkb

2k2µ − 2ηcbηa
νkd

1k1µ

+2ηadηc
νk1µkb

2 + 2ηcbηa
µkd

1k2ν − 2ηacηbdk1µk2ν − 4ηa
νη

c
µkd

1kb
2

+2ηc
µη

d
νkb

2ka
2 + 2ηa

µη
b
νkd

1kc
1

}
+

{
µ ↔ ν

}]



Propagators

• Finally, we need the propagator for the soft gravitons and
the hard particles.

• The soft graviton propagator is given by

Gµν,ρσ(k) = −1
2

(
ηµρηνσ + ηνρηµσ − 2

d − 2
ηµνηρσ

)
i

k2

• The propagator for the hard particles can be read from the
quadratic part of the 1PI action to be

iK−1(q) ≡ Ni(q)
q2 + M2

i



Evaluating Γ̃

• One more ingredient needed to evaluate the diagrams is the
expression of Γ̃ which represents the sum of the diagrams in
which external soft gravitons are not attached to an external
line.

. .̃Γ ..Γ(3) .̃Γ

• For proving soft graviton theorem, we need an expression
for Γ̃ in terms of the amplitude without the soft graviton.



Evaluating Γ̃

• To obtain this expression, we note that since all the vertices
(i.e. full 1PI effective action) have been covariantized w.r.t.
soft graviton fields, the amplitude computed using this must
also reflect this fact.

• This means that Γ̃ can be obtained by the covariantization
of the full amplitude without the soft graviton field.

• If Γα1···αN (q1, · · · , qN) denotes the amplitude without the soft
graviton, the result of covariantization (and hence Γ̃) is given
by

Γ̃α1···αN (ε, k; q1, · · · qN)

= −
N∑

i=1

εµνqµi
∂

∂qiν
Γα1···αN (q1, · · · , qN) +O(kµ)



Final Result

• The Feynman diagrams can now be evaluated following the
standard procedure using the vertices and propagator given
above.

• We just state the final result for the amplitude involving M
soft gravitons and N finite energy particles carrying arbitrary
mass and arbitrary spin in terms of the amplitude without
the soft gravitons upto subleading order.

(Chakrabarti, Kashyap, Sahoo, Sen, MV)



Final Result

{
N∏

i=1

ϵi,αi(pi)

} [{
M∏

r=1

S(0)r

}
Γα1···αN +

M∑
s=1

{
M∏

r=1
r ̸=s

S(0)r

} [
S(1)s Γ

]α1···αN

+

M∑
r,u=1
r<u

{
M∏

s=1
s̸=r,u

S(0)s

} {
N∑

j=1

{pj · (kr + ku)}−1 M(pj; εr, kr, εu, ku)

}
Γα1···αN

]

where, S(0)r =

N∑
ℓ=1

(pℓ · kr)
−1 εr,µν pµℓ pνℓ

[S(1)s Γ]α1···αN =

N∑
j=1

(pj · ks)
−1 εs,bµ ksa pµj

(
pb

j
∂

∂pja
− pa

j
∂

∂pjb

)
Γα1···αN

+

N∑
j=1

(pj · ks)
−1 εs,bµ ksa pµj (Jab)

αj
βj

Γα1···αj−1βjαj+1···αN



Final Result

M(pi; ε1, k1, ε2, k2)

= (pi · k1)
−1(pi · k2)

−1
{
−(k1 · k2) (pi · ε1 · pi) (pi · ε2 · pi)

+ 2 (pi · k2) (pi · ε1 · pi) (pi · ε2 · k1) + 2 (pi · k1) (pi · ε2 · pi) (pi · ε1 · k2)

−2 (pi · k1) (pi · k2) (pi · ε1 · ε2 · pi)
}

+ (k1 · k2)
−1

{
−(k2 · ε1 · ε2 · pi)(k2 · pi)− (k1 · ε2 · ε1 · pi)(k1 · pi)

+ (k2 · ε1 · ε2 · pi)(k1 · pi) + (k1 · ε2 · ε1 · pi)(k2 · pi)

−εγδ1 ε2γδ(k1 · pi)(k2 · pi)− 2(pi · ε1 · k2)(pi · ε2 · k1)

+(pi · ε2 · pi)(k2 · ε1 · k2) + (pi · ε1 · pi)(k1 · ε2 · k1)
}



Some Consistency Checks

• The covariantized action possesses a gauge invariance un-
der

Sµν(x) → Sµν(x) + ∂µξν + ∂νξµ

The above amplitude obeys this property.

• The above result matches with the result for two soft gravi-
tons in specific theories derived earlier.

(Klose, McLoughlin, Nandan, Plefka, Travaglini; Saha)

• The full result for the case of arbitrary number of soft gravi-
tons in Einstein’s gravity derived using the CHY prescription
also matches with this result.

(Chakrabarti, Kashyap, Sahoo, Sen, MV)



Beyond subleading order....

• The covariantization procedure as described earlier does
not give rise to a unique 1PI action if we are interested in
the subsubleading order results.

• To see this, we note that for promoting a flat space action to
curved space, not only we need to replace ordinary deriva-
tives by covariant derivatives, we also have the possibility
of adding terms involving the coupling of the fields with the
Riemann tensor.

• At subsubleading order, we shall need to keep terms upto
O(kµkν) while doing the Feynman diagram calculations. Now,
the Riemann tensor contains two derivatives. Hence, the
coupling with the Riemann tensor can’t be ignored.



Beyond subleading order....

• Upto subsubleading order, the most general form for the
relevant coupling of Riemann tensor with the finite energy
fields can be written as (Laddha, Sen)

S̄(3) =
1
2

∫
ddq1

(2π)d
ddq2

(2π)d (2π)
dδd(q1 + q2 + k)Rµρνσ(ε, k)

Φα(q1)Bαβ,µρνσ(q2)Φβ(q2)

where, Rµρνσ is the Riemann tensor computed using the
soft graviton metric Sµν and Bαβ,µρνσ is an arbitrary tensor
which may depend upon the theory we are considering.



Beyond subleading order....

• Once we allow for the arbitrary tensor Bαβ,µρνσ, the univer-
sality of the theorem is lost (even though the factorization
needed for the soft theorem may still work).

• For the case of single soft graviton, the explicit form for the
subsubleading order result is known. This involves a uni-
versal part and a non universal part. (Laddha, Sen)

• For the case of multiple soft gravitons, one needs to work
out more vertices. But, the procedure is straightforward.



Beyond subleading order....

• However, even though the result depends upon the theory
under consideration, at subsubleading order the amplitude
with soft external gravitons can still be expressed in terms of
the amplitude without the soft gravitons multiplied by some
soft factors.

• However, beyond subsubleading order, this factorization prop-
erty no longer holds in general.

• This means that the soft graviton theorem breaks down be-
yond the subsubleading order(i.e. we can’t express the am-
plitude involving soft gravitons in terms of amplitudes with-
out soft gravitons multiplied by some soft factors).



Beyond subleading order....

• To see this, we recall the following diagram for the two soft
gravitons

..Γ(3) .̃Γ

• At subsubsubleading order, we shall need to evaluate the Γ̃
upto O(kµkν).

• Since the covariantization procedure was directly used for
the evaluation of Γ̃, it will be affected by Riemann coupling
term.



Beyond subleading order....

• Now, the Riemann coupling term will not be of the factorised
form in which it is given by a soft factor times an amplitude
without the soft gravitons. Thus, the soft theorem breaks
down.

• To summarize: The soft graviton theorem is universal
for leading and subleading orders, non-universal at sub-
subleading order and, in general, breaks down beyond
it.



Some comments about Yang-Mills theories

• One can follow the similar procedure to derive the soft the-
orems in the Yang-Mills theories.

• The leading result in this case is known to be universal.
(Weinberg)

• Beyond leading order, there can be a non universal coupling
with the field strength Fµν which involves a single derivative
only. The diagramatics now shows that the subleading re-
sult is non universal and beyond subleading order, the soft
theorem breaks down.

• To summarize: The soft photon/gluon theorem is uni-
versal for leading order, non-universal for subleading
order and, in general, breaks down beyond it.



Thank You


