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1. Introduction. The distribution of quadratic residues and non-resi-
dues modulo p has been of intrigue to the number theorists of the last several
decades. Although Gauss’ celebrated Quadratic Reciprocity Law gives a
beautiful criterion to decide whether a given number is a quadratic residue
modulo p or not, it is still an open problem to find a small upper bound on
the least quadratic non-residue mod p as a function of p, at least when p ≡ 1
(mod8). This is because for any given natural number N one can construct
many primes p ≡ 1 (mod8) having the first N positive integers as quadratic
residue (see, for example, Theorem 3 below).

In 1928, Brauer [1] proved that for any given natural number N one can
find N consecutive quadratic residues as well as N consecutive quadratic
non-residues modulo p for all sufficiently large primes p. Vegh, in a series of
papers ([10]–[13]), studied the distribution of primitive roots modulo p. He
considered problems such as the existence of a consecutive pair of primitive
roots modulo p, or the existence of arbitrarily long arithmetic progressions
of primitive roots modulo ph whose common difference is also a primitive
root mod ph, as well as the existence of a primitive root in a given sequence
of the form g1 + b, g2 + b, . . . , gφ(p−1) + b, where b is any given integer and
the gi’s are all the primitive roots modulo p.

In 1956, Carlitz [2] proved that for sufficiently large primes p one can
find arbitrarily long strings of consecutive primitive roots modulo p. This
was independently proved by Szalay ([8] and [9]).

In [5], some of us studied the problem of the distribution of the non-
primitive roots modulo p. More precisely, we studied the distribution of
the quadratic non-residues which are not primitive roots modulo p. In the
present paper, we improve upon [5] and prove results analogous to those of
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Brauer and Szalay. Our main ingredients are some technical results due to
Weil [14] or Davenport [4] and Szalay [9].

For convenience, we abbreviate the term “quadratic non-residue which is
not a primitive root” to “QNRNP”. Note further that φ(p− 1) = (p− 1)/2
if and only if p = 22m

+ 1 is a Fermat prime. In this case, the set of all
QNRNP’s modulo p is empty, since the primitive roots coincide with the
quadratic non-residues. Thus, throughout this paper we assume that p is
not a Fermat prime. We prove the following theorems.

Theorem 1. Let ε ∈ (0, 1/2) be fixed and let N be any positive integer.

Then for all primes p ≥ exp((2ε−1)8N ) satisfying

φ(p − 1)

p − 1
≤ 1

2
− ε,

we can find N consecutive QNRNP’s modulo p.

Theorem 1 above generalizes the results of Brauer [1] and Gun et al. [5].
Given a prime number p, we let

k :=
p − 1

2
− φ(p − 1)

denote the number of QNRNP’s modulo p and we write g1 < · · · < gk for
the increasing sequence of QNRNP’s.

Corollary 1. For any given ε ∈ (0, 1/2) and natural number N , for

all primes p ≥ exp((2ε−1)8N ) and satisfying φ(p− 1)/(p− 1) ≤ 1/2− ε, the

sequence g1 + N, g2 + N, . . . , gk + N contains at least one QNRNP.

Theorem 2. There exists an absolute constant c0 > 0 such that for

almost all primes p, there exists a string of

Np =

⌊

c0
log p

log log p

⌋

of quadratic non-residues which are not primitive roots.

We may also combine our theorems with the above-mentioned results of
Brauer and Szalay and infer that if ε ∈ (0, 1/2) and N are fixed, then for
each sufficiently large prime p with φ(p − 1)/(p − 1) < 1/2 − ε, there exist
N consecutive quadratic residues, N consecutive primitive roots, as well as
N consecutive quadratic non-residues which furthermore are not primitive
roots. In fact, we can even arrange the quadratic residues to be the first N
quadratic residues.

Theorem 3. For every positive integer N there are infinitely many

primes p for which 1, . . . , N are quadratic residues modulo p, and there

exist both a string of N consecutive QNRNP’s as well as a string of N
consecutive primitive roots. The smallest such prime can be chosen to be

< exp(exp(c1N
2)), where c1 > 0 is an absolute constant.



Distribution of residues modulo p 327

2. Preliminaries. Unless otherwise specified, p denotes a sufficiently
large prime number. We denote the group of residues modulo p by Zp and
the multiplicative group of Zp by Z

∗
p.

An element ζ ∈ Z
∗
p is said to be a primitive root modulo p if ζ is a

generator of Z
∗
p. Once we know a primitive root modulo p, the QNRNP’s

are precisely the elements of the set

{ζ l : l = 1, 3, . . . , p − 2 and (l, p − 1) > 1}.

Consider a non-principal character χ : Z
∗
p → µp−1, where µp−1 denotes the

group of (p − 1)th roots of unity. Then it is easy to observe that χ(ζ) is a
primitive (p − 1)th root of unity if and only if ζ is a primitive root mod p.
Let η be a primitive (p−1)th root of unity and assume that χ(ζ) = η. Since
χ is a homomorphism, it follows that χ(ζi) = χi(ζ) = ηi. Hence, by the
above observation, it is clear that χ(κ) = ηi with (i, p − 1) > 1 with some
odd i if and only if κ is a QNRNP mod p.

Let l be any non-negative integer. We define

βl(p − 1) =
∑

1≤i≤p−1
i odd, (i,p−1)>1

(ηi)l.

Lemma 1. For 0 < l < p − 1, we have

βl(p − 1) = −αl(p − 1),

where αl(p− 1) is the sum of the lth powers of the primitive (p− 1)th roots

of unity.

Proof. Observing that

p−2
∑

i=0

ηi = 0 =

(p−3)/2
∑

i=0

η2i,

we get the desired result.

Let

χ1, χ2 = χ2
1, . . . , χp−2 = χp−2

1 , χ0 = χp−1
1

be all the multiplicative characters modulo p with the convention χl(0) = 0
for all l = 0, 1, . . . , p − 2.

Lemma 2. We have

p−2
∑

l=0

βl(p − 1)χl(x) =

{

p − 1 if x is a QNRNP ,

0 otherwise.
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Proof. When x ≡ 0 (mod p), the statement is obvious. We assume that
x 6≡ 0 (modp). Let η be a primitive (p − 1)th root of unity. Consider

ηi1 , ηi2 , . . . , ηik , where 1 < i1 < · · · < ik, and (ij, p − 1) > 1

and ij is odd for all j = 1, . . . , k.

The expression

1 + ηilχ1(x) + (ηil)2χ2(x) + · · · + (ηil)p−2χp−2(x)

has the value p − 1 if (χ1(x))−1 = ηil and zero otherwise whenever x 6= 0.
Thus, giving l the values 1, . . . , k and adding up the above resulting expres-
sions we get

β0(p − 1)χ0(x) + · · · + βp−2(p − 1)χp−2(x) =

{

p − 1 if x is a QNRNP,

0 otherwise,

which completes the proof of the lemma.

The following deep theorem of Weil [14] is of central importance in the
proofs of Theorems 1 and 2.

Theorem 4. For any integer l satisfying 2 ≤ l < p and for any non-

principal characters χ1, . . . , χl and distinct a1, . . . , al ∈ Zp, we have

∣

∣

∣

p
∑

x=1

χ1(x + a1)χ2(x + a2) · · ·χl(x + al)
∣

∣

∣
≤ (l − 1)

√
p.

For l = 2, Davenport [3] was the first one to prove the above bound.
Note also that when l = 1, the sum is 0.

For a positive integer m, we write ω(m) for the number of distinct prime
factors of m. The next result is due to Szalay [8].

Lemma 3. We have

p−2
∑

l=0

|αl(p − 1)| = 2ω(p−1)φ(p − 1).

3. Proof of Theorem 1. Let M(p, N) denote the number of consec-
utive QNRNP’s modulo p of length N in Z

∗
p. We start with the following

technical lemma.

Lemma 4. For any prime p and any positive integer N , we have

∣

∣

∣

∣

M(p, N) − p

(

k

p − 1

)N ∣

∣

∣

∣

≤ 2N2Nω(p−1)√p.
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Proof. First note that β0(p − 1) = k. Clearly, by Lemma 2, we have

M(p, N) =

p−N
∑

x=1

{N−1
∏

j=0

[

1

p − 1

p−2
∑

l=0

βl(p − 1)χl(x + j)

]}

=

p
∑

x=1

{N−1
∏

j=0

[

1

p − 1

p−2
∑

l=0

βl(p − 1)χl(x + j)

]}

= (p − 1)−N
p

∑

x=1

{N−1
∏

j=0

[

k +

p−2
∑

l=1

βl(p − 1)χl(x + j)

]}

= p

(

k

p − 1

)N

+
A

(p − 1)N
,

where

A =
∑

0≤l1,...,lN≤p−2
(l1,...,lN ) 6=0

[

N
∏

j=1

βlj (p − 1)
]

p
∑

x=1

[

N
∏

j=1

χlj (x + j − 1)
]

.

In order to finish the proof of Lemma 4, we have to estimate A. So, we
rewrite it as A = B + C, where

C =
∑

1≤l1,...,lN≤p−2

[

N
∏

j=1

βlj (p − 1)
]

p
∑

x=1

[

N
∏

j=1

χlj (x + j − 1)
]

,

and B is the similar summation with at least one (but not all) of the lj ’s
equal to zero. We further separate each sum over the set for which exactly
one of the li’s is zero, then exactly two of the li’s are 0, etc., up to when just
one of the li’s is non-zero.

Now, we look at the sum corresponding to the case when exactly j of
the li’s are equal to zero. This means that N − j of the li’s are non-zero.
The corresponding sum is

Bj = kj
∑

0<r1,...,rN−j≤p−2

[

N−j
∏

b=1

βrb
(p − 1)

][

p
∑

x=1

(

N−j
∏

b=1

χrb
(x + mb)

)

+ E
]

,

where E is the sum of some (p − 1)th roots of unity and in the summation
at most N terms occur. When we take the absolute value of this summand,
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we get

|Bj| ≤ kj
∑

0<r1,...,rN−j≤p−2

N−j
∏

b=1

|βrb
(p − 1)|

(
∣

∣

∣

p
∑

x=1

(

N−j
∏

b=1

χrb
(x + mb)

)
∣

∣

∣
+ N

)

≤ kj
(

p−2
∑

l=0

|βl(p − 1)|
)N−j(∣

∣

∣

p
∑

x=1

(

N−j
∏

b=1

χrb
(x + mb)

)∣

∣

∣
+ N

)

.

Notice now that |βl(p − 1)| = |αl(p − 1)| for all l = 1, . . . , p − 2, and
|β0(p − 1)| = k, while |α0(p − 1)| = φ(p − 1). Thus, by Theorem 4 and
Lemma 3, we get

|Bj| < kj(2ω(p−1)φ(p − 1))N−j((N − j − 1)
√

p + N)(1)

< 2Nkj(2ω(p−1)φ(p − 1))N−j√p.

This inequality holds for all j = 1, . . . , N − 2. When j = N − 1, we get

|BN−1| ≤ kN−12ω(p−1)φ(p − 1)N.

The term C in A can also be estimated as above and we get for it

|C| ≤ (2ω(p−1)φ(p − 1))N (N − 1)
√

p.

So, we see that inequality (1) holds when j = N − 1 as well. Adding up all
the above estimates for |Bj| and |C|, we get

A

(p − 1)N
≤ 2N

√
p

(p − 1)N

N−1
∑

j=0

(

N

j

)

kj(2ω(p−1)φ(p − 1))N−j

< 2N
√

p

(

2ω(p−1) φ(p − 1)

p − 1
+

k

p − 1

)N

< 2N2Nω(p−1)√p,

where we used the fact that 2ω(p−1)φ(p − 1)/(p − 1) + k/(p − 1) < 2ω(p−1).
This finishes the proof of the lemma.

Proof of Theorem 1. We assume that N ≥ 4. From the definition of k,
it is easy to observe that

k

p − 1
=

1

2
− φ(p − 1)

p − 1
≥ ε.

Lemma 4 above tells us now that

pεN − M(p, N) ≤
∣

∣

∣

∣

M(p, N) − p

(

k

p − 1

)N ∣

∣

∣

∣

≤ 2N2Nω(p−1)√p.

The above chain of inequalities obviously implies that M(p, N) > 0 if

(2)
√

p εN > 2N2Nω(p−1).
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This last inequality is satisfied if

(3) log p > 2 log(2N) + 2N(ω(p − 1) log 2 + log(ε−1)).

For p > 4 · 106, we have ω(p − 1) < 2 log p/log log p. Thus, for such values
of p, the right hand side above is bounded above by

2 log(2N) +
4N log 2

log log p
log p + 2N log(ε−1),

and so the desired inequality holds provided that
(

1 − 4N log 2

log log p

)

log p > 2 log(2N) + 2N log(ε−1).

When p > exp(28N), the factor appearing in parenthesis on the left hand
side of the last inequality above is ≥ 1/2. Note that since N ≥ 1, we have
exp(28N) > 4 · 106, so the inequality ω(p − 1) < 2 log p/log log p is indeed
satisfied for such values of p. Thus, in this range for p it suffices that

log p ≥ 4 log(2N) + 4N log(ε−1),

leading to p ≥ (2N)4ε−4N . Since (2N)4 ≤ 24N , the inequality

exp((2ε−1)8N) > max{exp(28N), (2N)4(ε−1)4N}
holds for all ε ≤ 1/2 and N ≥ 1, so the proof of Theorem 1 is complete.

4. Proof of Theorem 2. Let P be the set of all primes. Fix δ > 0 and
let P1 be the set of all primes p ∈ P such that |ω(p−1)−log log p| < δ log log p
and p− 1 is divisible by some odd prime q ≤ log log p. It is well-known that
P1 contains most primes; that is, if x is large then the set of primes p ∈ P\P1

is of cardinality o(π(x)) as x → ∞.
We now let x be a large positive real number. Let p ≤ x be a prime. We

assume that p > x/log x, since there are only π(x/log x) = o(π(x)) primes
p ≤ x/log x. Then log p ≥ log x − log log x, so log log p = log log x + O(1).
Thus, if p ∈ P1∩ [x/log x, x] and x is large, then ω(p−1) ≤ (1+2δ) log log x.
Furthermore, if q is the smallest odd prime factor of p−1, then φ(p−1)/(p−1)
≤ 1/2 − 1/(2q), and since 2q ≤ 2 log log x, we can take ε = 1/(2 log log x)
and hence ε−1 = 2 log log x. With all these choices, inequality (3) will be
satisfied if

log x − log log x > 2 log(2N) + 2N((1 + 2δ) log log x log 2 + log(2 log log x)).

The above inequality is satisfied if we choose

N =

⌊

c3
log x

log log x

⌋

,

where we can take c3 to be a positive constant < 1/(2 log 2), provided that
afterwards δ is chosen to be small enough and x is then chosen to be suffi-
ciently large. This completes the proof of the theorem.
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5. Proof of Theorem 3. First we prove that there exist infinitely
many primes p for which 1, . . . , N are all quadratic residues modulo p for
any given natural number N . For each prime q ≥ 5 let aq (mod q) be a
quadratic residue modulo q such that aq > 1 and put a3 = 1. Let p be a
prime congruent to 1 modulo 8 and to aq modulo q for all odd primes q ≤ N .
Then, by Quadratic Reciprocity,

(

q

p

)

=

(

p

q

)

=

(

aq

q

)

= 1

whenever q ≤ N is an odd prime. Furthermore,
(

2
p

)

= 1 because p ≡ 1

(mod8). Using the multiplicativity property of the Legendre symbol, we
find that

(

a
p

)

= 1 whenever a is a positive integer whose all prime factors

are ≤ N . In particular, the first N positive integers are quadratic residues
modulo p. Note that 3 | (p− 1), and from the argument used in the proof of
Theorem 2, it follows that we may take ε = 1/6. Furthermore, p − 1 is not
divisible by any prime q ∈ [5, . . . , N ]. By the Chinese remainder theorem, the
system of congruences p ≡ 1 (mod8) and p ≡ aq (mod q) for all odd primes
q ≤ N has a solution p0 (modP ), where P = 4

∏

q≤N q = exp(O(N)).

There are infinitely many primes in this progression. Now the argument
from the proof of Theorem 1 shows that such p can be chosen on the scale
of x = exp(128N ). The only problem that might worry us is the existence
of primes in the arithmetic progression p0 (modP ) on the scale of x. But
note that P = exp(O(N)) = (log x)o(1), so the Siegel–Walfisz theorem, for
example, tells us that the interval [x, 2x] contains (1+o(1))π(x)/φ(P ) primes
p ≡ p0 (modP ) (in particular, at least one of them), which finishes the
argument.

6. Final remarks. Let N 6= 1 be any square-free natural number. Then
it is well-known that N is a quadratic non-residue modulo p for infinitely
many primes p. The analogous result for primitive roots is known as Artin’s
Primitive Root Conjecture. In 1967, Hooley [6] proved this conjecture sub-
ject to the assumption of the generalized Riemann hypothesis. Interestingly,
it is not even known whether 2 is a primitive root modulo infinitely many
primes. For more details, we refer to the article by Ram Murty [7]. Finally,
in Theorem 1, it would be of interest to obtain a constant M which depends
only on the natural number N and not on ε.
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[1] A. Brauer, Über Sequenzen von Potenzresten, Sitzungsber. Preuß. Akad. Wiss., 1928,
9–16.

[2] L. Carlitz, Sets of primitive roots, Compos. Math. 13 (1956), 65–70.
[3] H. Davenport, On the distribution of the lth power residues mod p, J. London Math.

Soc. 7 (1932), 117–121.
[4] —, On character sums in finite fields, Acta Math. 71 (1939), 99–121.
[5] S. Gun, B. Ramakrishnan, B. Sahu and R. Thangadurai, Distribution of quadratic

non-residues which are not primitive roots, Math. Bohem. 130 (2005), 387–396.
[6] C. Hooley, On Artin’s conjecture, J. Reine Angew. Math. 226 (1967), 209–220.
[7] M. R. Murty, Artin’s conjecture for primitive roots, Math. Intelligencer 10 (1988),

no. 4, 59–67.
[8] M. Szalay, On the distribution of primitive roots mod p, Mat. Lapok 21 (1970),

357–362 (in Hungarian).
[9] —, On the distribution of the primitive roots of a prime, J. Number Theory 7 (1975),

184–188.
[10] E. Vegh, Primitive roots modulo a prime as consecutive terms of an arithmetic

progression, J. Reine Angew. Math. 235 (1969), 185–188.
[11] —, Arithmetic progressions of primitive roots of a prime. II, ibid. 244 (1970), 108–

111.
[12] —, A note on the distribution of the primitive roots of a prime, J. Number Theory

3 (1971), 13–18.
[13] —, Arithmetic progressions of primitive roots of a prime. III, J. Reine Angew. Math.

256 (1972), 130–137.
[14] A. Weil, On the Riemann hypothesis in function-fields, Proc. Nat. Acad. Sci. U.S.A.

27 (1941), 345–347.

Department of Mathematical and
Computational Sciences
3359 Mississauga Road North
Mississauga, ON, Canada, L5L 1C6
E-mail: sanoli.gun@utoronto.ca

Instituto de Matemáticas
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