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1. Introduction. The distribution of quadratic residues and non-resi-
dues modulo p has been of intrigue to the number theorists of the last several
decades. Although Gauss’ celebrated Quadratic Reciprocity Law gives a
beautiful criterion to decide whether a given number is a quadratic residue
modulo p or not, it is still an open problem to find a small upper bound on
the least quadratic non-residue mod p as a function of p, at least when p = 1
(mod 8). This is because for any given natural number N one can construct
many primes p = 1 (mod 8) having the first IV positive integers as quadratic
residue (see, for example, Theorem 3 below).

In 1928, Brauer [1] proved that for any given natural number N one can
find N consecutive quadratic residues as well as N consecutive quadratic
non-residues modulo p for all sufficiently large primes p. Vegh, in a series of
papers ([10]-[13]), studied the distribution of primitive roots modulo p. He
considered problems such as the existence of a consecutive pair of primitive
roots modulo p, or the existence of arbitrarily long arithmetic progressions
of primitive roots modulo p" whose common difference is also a primitive
root mod p”, as well as the existence of a primitive root in a given sequence
of the form g1 + 0,92 +b,...,gg(p—1) + b, where b is any given integer and
the g;’s are all the primitive roots modulo p.

In 1956, Carlitz [2] proved that for sufficiently large primes p one can
find arbitrarily long strings of consecutive primitive roots modulo p. This
was independently proved by Szalay ([8] and [9]).

In [5], some of us studied the problem of the distribution of the non-
primitive roots modulo p. More precisely, we studied the distribution of
the quadratic non-residues which are not primitive roots modulo p. In the
present paper, we improve upon [5] and prove results analogous to those of
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Brauer and Szalay. Our main ingredients are some technical results due to
Weil [14] or Davenport [4] and Szalay [9].

For convenience, we abbreviate the term “quadratic non-residue which is
not a primitive root” to “QNRNP”. Note further that ¢(p —1) = (p —1)/2
if and only if p = 22" + 1 is a Fermat prime. In this case, the set of all
QNRNP’s modulo p is empty, since the primitive roots coincide with the
quadratic non-residues. Thus, throughout this paper we assume that p is
not a Fermat prime. We prove the following theorems.

THEOREM 1. Let e € (0,1/2) be fized and let N be any positive integer.
Then for all primes p > exp((2e~1)8N) satisfying
¢op—1) _ 1 _ ‘.
p—1 — 2
we can find N consecutive QNRNP’s modulo p.

Theorem 1 above generalizes the results of Brauer [1] and Gun et al. [5].
Given a prime number p, we let

p—1
F=2 ol -1)
denote the number of QNRNP’s modulo p and we write g1 < --- < g for

the increasing sequence of QNRNP’s.

COROLLARY 1. For any given € € (0,1/2) and natural number N, for
all primes p > exp((2e™1)8N) and satisfying ¢(p —1)/(p — 1) < 1/2 — ¢, the
sequence g1 + N,ga + N, ..., gr + N contains at least one QNRNP.

THEOREM 2. There exists an absolute constant cog > 0 such that for
almost all primes p, there exists a string of

]
Np:{ ogp J

C —_—
0 log logp
of quadratic non-residues which are not primitive roots.

We may also combine our theorems with the above-mentioned results of
Brauer and Szalay and infer that if ¢ € (0,1/2) and N are fixed, then for
each sufficiently large prime p with ¢(p —1)/(p — 1) < 1/2 — ¢, there exist
N consecutive quadratic residues, N consecutive primitive roots, as well as
N consecutive quadratic non-residues which furthermore are not primitive
roots. In fact, we can even arrange the quadratic residues to be the first N
quadratic residues.

THEOREM 3. For every positive integer N there are infinitely many
primes p for which 1,...,N are quadratic residues modulo p, and there
exist both a string of N consecutive QNRNP’s as well as a string of N
consecutive primitive roots. The smallest such prime can be chosen to be
< exp(exp(c1N?)), where ¢; > 0 is an absolute constant.
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2. Preliminaries. Unless otherwise specified, p denotes a sufficiently
large prime number. We denote the group of residues modulo p by Z, and
the multiplicative group of Z;, by Zj.

An element ¢ € Zj is said to be a primitive root modulo p if ¢ is a
generator of Z,. Once we know a primitive root modulo p, the QNRNP’s
are precisely the elements of the set

{¢t:1=1,3,...,p—2and (I,p—1) > 1}.

Consider a non-principal character x : Z, — pp—1, where p,,—1 denotes the
group of (p — 1)th roots of unity. Then it is easy to observe that x(() is a
primitive (p — 1)th root of unity if and only if ¢ is a primitive root mod p.
Let n be a primitive (p — 1)th root of unity and assume that x(¢) = 7. Since
X is a homomorphism, it follows that x(¢*) = x*(¢) = n'. Hence, by the
above observation, it is clear that x (k) = n with (i,p — 1) > 1 with some
odd 7 if and only if x is a QNRNP mod p.

Let [ be any non-negative integer. We define

Br-1)= > )"
1<i<p—1
iodd, (i,p—1)>1
LEMMA 1. For 0 <l <p—1, we have
Gilp—1) = —a(p— 1),

where ay(p — 1) is the sum of the lth powers of the primitive (p — 1)th roots
of unity.

Proof. Observing that

p—2 (p—3)/2
n=0= > n*
i=0 1=0

we get the desired result. m
Let
— 12 — P2 — p1
X1, X2 = X1y ---» Xp—2= X1 » X0=X1

be all the multiplicative characters modulo p with the convention y;(0) = 0
foralll=0,1,...,p—2.

LEMMA 2. We have

p—2 . .
—1 ifxisa QNRNP,
Bilp — Dxu(x) = {p

0 otherwise.



328 S. Gun et al.

Proof. When z = 0 (mod p), the statement is obvious. We assume that
x Z 0 (modp). Let n be a primitive (p — 1)th root of unity. Consider

ntn2,...,n%, wherel <iy <---<i, and (ij,p—1)>1
and 7; is odd for all j =1,... k.
The expression
L+ nxi(@) + (") x2(@) + -+ (0")P " 2xp-a (@)

has the value p — 1 if (x1(z))~! =n% and zero otherwise whenever z # 0.
Thus, giving [ the values 1, ...,k and adding up the above resulting expres-
sions we get

p—1 if xis a QNRNP,

Bo(p — Dxo(x) + -+ Bp—2(p — Dxp—2(x) = { 0 otherwise

which completes the proof of the lemma. m

The following deep theorem of Weil [14] is of central importance in the
proofs of Theorems 1 and 2.

THEOREM 4. For any integer | satisfying 2 < 1 < p and for any non-

principal characters x1,...,x; and distinct ay,...,a; € Zyp, we have
p
’Z xi(z+a)xe(z+a2) - xi(z+a)| < (1—1)/p.
r=1

For | = 2, Davenport [3] was the first one to prove the above bound.
Note also that when [ = 1, the sum is 0.

For a positive integer m, we write w(m) for the number of distinct prime
factors of m. The next result is due to Szalay [8].

LEMMA 3. We have

p—2
3 laup - 1)] = 22 Dg(p — 1),
=0

3. Proof of Theorem 1. Let M(p, N) denote the number of consec-
utive QNRNP’s modulo p of length N in Z;. We start with the following
technical lemma.

LEMMA 4. For any prime p and any positive integer N, we have

N
e
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Proof. First note that By(p — 1) = k. Clearly, by Lemma 2, we have

M(p,N) = g{]ﬁ[ilfmp— Dxa(z +J’)} }

j=o P~ 11z
=é{§[ﬁgmp—nxl<xmﬂ
p  N-1 p—2
=(p- 1)_NZ{ 11 [k +> Bl - x(z +J’)} }

z=1 % j=0 I=1

where

NE
'EZ

A= > [ﬁ B (p — 1)}

0<ly, v <p—2 j=1
(1IN )#0

8
Il
_
<
I
—

In order to finish the proof of Lemma 4, we have to estimate A. So, we
rewrite it as A = B + C, where

M=
.zz

Xl](x+]_1) )

c= X [ﬂﬂl]«p— 8]

1<ty ly<p—2 j=1

|

and B is the similar summation with at least one (but not all) of the [;’s
equal to zero. We further separate each sum over the set for which exactly
one of the [;’s is zero, then exactly two of the [;’s are 0, etc., up to when just
one of the [;’s is non-zero.

1

8
Il
—

J

Now, we look at the sum corresponding to the case when exactly j of
the [;’s are equal to zero. This means that N — j of the [;’s are non-zero.
The corresponding sum is

N

B S [Tt 0] [T wotes ) + 2]

0<T’1,..‘,T'N,j§p—2 b=1 =1 b=1

where E is the sum of some (p — 1)th roots of unity and in the summation
at most N terms occur. When we take the absolute value of this summand,
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we get
N—j p N—j
Bk 3 T8 = DI([3(TT e +ma)|+ W)
0<ry,ee PN —j<p—2 b=1 rz=1 b=1
P2 Nej 1 P N—j
<W (31 -01)" (S (T e+ m) |+ N).
1=0 z=1 b=1

Notice now that [Gi(p — 1)] = |au(p — 1)| for all I = 1,...,p — 2, and
|Bo(p — 1)| = k, while |ag(p — 1)| = ¢é(p — 1). Thus, by Theorem 4 and
Lemma 3, we get

(1) |Bj| < k(20D (p — 1))V I(N = j = 1)y/p+ N)
< ANKI (20 V(p — 1))V /.
This inequality holds for all j =1,..., N —2. When j = N — 1, we get
|By_1| < EN712¢0—Dg(p — 1)N.
The term C' in A can also be estimated as above and we get for it
0] < @*Vop - 1))V (N — 1) V.

So, we see that inequality (1) holds when j = N — 1 as well. Adding up all
the above estimates for |B;| and \C! we get

<2Nv%@““”dp_)+-k )N

p—1 p-1
< 2NNl
where we used the fact that 2¢®~De(p —1)/(p— 1)+ k/(p — 1) < 2¢®~1),
This finishes the proof of the lemma. =
Proof of Theorem 1. We assume that N > 4. From the definition of &,
it is easy to observe that
k

L o¢le—1)
p—1 2 p—1 =

Lemma 4 above tells us now that

N
Aupva—p<;ﬁT> ‘§2AQN“@‘U¢ﬁ

pEN—M(p’N) S

The above chain of inequalities obviously implies that M (p, N) > 0 if
(2) VpeN > aNaNe—D),
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This last inequality is satisfied if
(3) logp > 2log(2N) + 2N (w(p — 1) log 2 + log(e™1)).

For p > 4 - 105, we have w(p — 1) < 2logp/loglogp. Thus, for such values
of p, the right hand side above is bounded above by

4N log 2
Z 082 0g p 4 2N log(e ),
loglog p

and so the desired inequality holds provided that

<1 ~ 4Nlog?2

loglogp

When p > exp(28N ), the factor appearing in parenthesis on the left hand

side of the last inequality above is > 1/2. Note that since N > 1, we have

exp(28V) > 4- 105, so the inequality w(p — 1) < 2logp/loglogp is indeed
satisfied for such values of p. Thus, in this range for p it suffices that

logp > 4log(2N) + 4N log(e 1),
leading to p > (2N)* V. Since (2N)* < 24V the inequality
exp((2e)N) > maxfexp(25V), (2N (1Y)
holds for all € < 1/2 and N > 1, so the proof of Theorem 1 is complete. m

21og(2N) +

> logp > 2log(2N) + 2N log(e ™).

4. Proof of Theorem 2. Let P be the set of all primes. Fix § > 0 and
let P be the set of all primes p € P such that |w(p—1)—loglog p| < dloglogp
and p — 1 is divisible by some odd prime ¢ < loglog p. It is well-known that
P1 contains most primes; that is, if x is large then the set of primes p € P\ P,
is of cardinality o(7(x)) as  — oo.

We now let x be a large positive real number. Let p < x be a prime. We
assume that p > x/logz, since there are only m(x/logz) = o(m(x)) primes
p < z/logz. Then logp > logx — loglogx, so loglogp = loglogz + O(1).
Thus, if p € P1N[x/logz, ] and x is large, then w(p—1) < (14 26) loglog x.
Furthermore, if ¢ is the smallest odd prime factor of p—1, then ¢(p—1)/(p—1)
< 1/2 —1/(2q), and since 2q < 2loglogz, we can take ¢ = 1/(2loglogz)
and hence ¢! = 2loglogxz. With all these choices, inequality (3) will be
satisfied if

logx — loglogz > 2log(2N) + 2N ((1 + 29) log log = log 2 + log(2log log x)).
The above inequality is satisfied if we choose
1
N=|e;—2% |
loglog x
where we can take c3 to be a positive constant < 1/(2log2), provided that

afterwards § is chosen to be small enough and z is then chosen to be suffi-
ciently large. This completes the proof of the theorem. m
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5. Proof of Theorem 3. First we prove that there exist infinitely
many primes p for which 1,..., N are all quadratic residues modulo p for
any given natural number N. For each prime ¢ > 5 let a, (modgq) be a
quadratic residue modulo ¢ such that a, > 1 and put az = 1. Let p be a
prime congruent to 1 modulo 8 and to a, modulo ¢ for all odd primes ¢ < N.
Then, by Quadratic Reciprocity,

PRGROR

whenever ¢ < N is an odd prime. Furthermore, (%) = 1 because p = 1
(mod 8). Using the multiplicativity property of the Legendre symbol, we
find that (%) = 1 whenever a is a positive integer whose all prime factors
are < N. In particular, the first N positive integers are quadratic residues
modulo p. Note that 3 | (p— 1), and from the argument used in the proof of
Theorem 2, it follows that we may take ¢ = 1/6. Furthermore, p — 1 is not
divisible by any prime ¢ € [5, ..., N|. By the Chinese remainder theorem, the
system of congruences p = 1 (mod8) and p = a, (modg) for all odd primes
g < N has a solution py (mod P), where P = 4[] .yq = exp(O(N)).
There are infinitely many primes in this progression. Now the argument
from the proof of Theorem 1 shows that such p can be chosen on the scale
of x = exp(128V). The only problem that might worry us is the existence
of primes in the arithmetic progression py (mod P) on the scale of x. But
note that P = exp(O(N)) = (logz)°M), so the Siegel-Walfisz theorem, for
example, tells us that the interval [z, 2x] contains (1+o0(1))mw(z)/¢(P) primes
p = po (mod P) (in particular, at least one of them), which finishes the
argument. m

6. Final remarks. Let N # 1 be any square-free natural number. Then
it is well-known that N is a quadratic non-residue modulo p for infinitely
many primes p. The analogous result for primitive roots is known as Artin’s
Primitive Root Conjecture. In 1967, Hooley [6] proved this conjecture sub-
ject to the assumption of the generalized Riemann hypothesis. Interestingly,
it is not even known whether 2 is a primitive root modulo infinitely many
primes. For more details, we refer to the article by Ram Murty [7]. Finally,
in Theorem 1, it would be of interest to obtain a constant M which depends
only on the natural number N and not on .
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