Quadratic Non-Residues Versus Primitive Roots Modulo p

FLORIAN LUCA
Instituto de Matemáticas
Universidad Nacional Autónoma de México
C.P. 58089, Morelia, Michoacán, México
fluca@matmor.unam.mx

IGOR E. SHPARLINSKI
Department of Computing, Macquarie University
Sydney, NSW 2109, Australia
igor@ics.mq.edu.au

R. THANGADURAI
Harish-Chandra Research Institute
Chhatnag Road, Jhunsi, Allahabad 211019, India
thanga@hri.res.in
Abstract

Given any $\varepsilon \in (0, 1/2)$ and any positive integer $s \geq 2$, we prove that for every prime

$$p \geq \max\{s^2(4/\varepsilon)^{2s}, s^{651s \log \log(10s)}\}$$

satisfying $\varphi(p-1)/(p-1) \leq 1/2 - \varepsilon$, where $\varphi(k)$ is the Euler function, there are s consecutive quadratic non-residues which are not primitive roots modulo p.

Mathematics Subject Classification: 11A07, 11N35, 11N69

Key Words: quadratic residue, primitive root, sieve method

1 Introduction

For a prime p, we use \mathcal{N}_p and \mathcal{R}_p to denote the sets of quadratic nonresidues and primitive roots modulo p, respectively.

Both these sets have been extensively studied, although usually independently from each other (see [5, 6, 7] and references therein). Relatively less attention has been devoted to studying the set $\mathcal{S}_p = \mathcal{N}_p \setminus \mathcal{R}_p$, which is nevertheless an interesting object to study as $\mathcal{R}_p \subseteq \mathcal{N}_p$. We have

$$\#\mathcal{S}_p = \frac{p-1}{2} - \varphi(p-1),$$

where $\varphi(k)$ is the Euler function. In particular, $\mathcal{R}_p = \mathcal{N}_p$ if and only if $p = 2^{2^m} + 1$ is a Fermat prime. Thus, it is natural to expect that for primes p for which $\#\mathcal{S}_p$ is large enough, that is, $\varphi(p-1)/(p-1)$ is not too close to 1/2, the elements of \mathcal{S}_p have some uniformity of distribution properties.

In particular, it is shown in [2] that for any real $\varepsilon \in (0, 1/2)$ and any integer $s \geq 1$, for all primes

$$p \geq \exp \left((2/\varepsilon)^{8s}\right)$$

satisfying

$$\frac{\varphi(p-1)}{p-1} \leq \frac{1}{2} - \varepsilon,$$

the set \mathcal{S}_p contains s consecutive integers (see also [3]).
Here, we show that in fact the same property holds starting with significantly smaller primes. Alternatively, this means that for primes \(p \) satisfying (2), there are much longer strings of consecutive integers which all belong to \(S_p \).

We remark that it is quite possible that the method of [1] can be used to improve [2, Theorem 3].

2 Main Results

Theorem 1. Let \(\varepsilon \in (0, 1/2) \) be fixed and let \(s \geq 2 \) be an integer. If

\[
p \geq \max\{s^2(4/\varepsilon)^{2s}, s^{651s \log \log(10s)}\}
\]

is a prime satisfying

\[
\frac{\phi(p - 1)}{p - 1} \leq \frac{1}{2} - \varepsilon,
\]

then there are \(s \) consecutive integers \(n, \ldots, n + s - 1 \) in \(S_p \).

We now immediately derive the following improvement of [2, Corollary 1].

Corollary 1. Let \(\varepsilon \in (0, 1/2) \) be fixed and let \(s \geq 2 \) be an integer. If

\[
p \geq \max\{s^2(4/\varepsilon)^{2s}, s^{651s \log \log(10s)}\}
\]

is a prime satisfying

\[
\frac{\phi(p - 1)}{p - 1} \leq \frac{1}{2} - \varepsilon,
\]

then there are two elements \(a, b \in S_p \) with \(a - b = s \).

3 Proof

Let \(\psi(n) \) be the characteristic function of \(S_p \). It is enough to show that under the conditions of the theorem, we have

\[
W_s(p) > 0,
\]

where

\[
W_s(p) = \sum_{n=0}^{p-1} \prod_{j=1}^{s} \psi(n + j).
\]
As usual, we use $\omega(d)$ and $\mu(d)$ to denote the number of distinct prime factors and the Möbius function of d, respectively. For $d \mid p - 1$ we use $\psi_d(n)$ to denote the characteristic function of the set of dth power residues modulo p. Finally, we use $\eta(n)$ to denote the characteristic function of the set \mathcal{R}_p.

Clearly,

$$
\psi(n) = 1 - \psi_2(n) - \eta(n).
$$

Then, using the inclusion-exclusion principle, we see that for any integer $k \geq 1$, the following inequality holds:

$$
\eta(n) \leq 1 + \sum_{\nu=1}^{2k} \sum_{d \mid p-1, \omega(d) = \nu} \mu(d) \psi_d(n).
$$

Thus,

$$
\psi(n) \geq -\psi_2(n) - \sum_{\nu=1}^{2k} \sum_{d \mid p-1, \omega(d) = \nu} \mu(d) \psi_d(n).
$$

On the other hand, $\psi_d(n)$ can be expressed via multiplicative characters of order d as

$$
\psi_d(n) = \frac{1}{d} \sum_{\chi \equiv \chi_0} \chi(n) = \frac{1}{d} \sum_{\chi \equiv \chi_0, \chi \neq \chi_0} \chi(n),
$$

where χ_0 is the principal character and the summation is taken over all multiplicative characters χ whose order divides d (see [5, Section 3.1]). Substituting (5) in (4), we derive

$$
\psi(n) \geq \vartheta_k(p) - \frac{1}{2} \left(\frac{n}{p} \right) - \sum_{\nu=1}^{2k} \sum_{d \mid p-1, \omega(d) = \nu} \frac{\mu(d)}{d} \sum_{\chi \equiv \chi_0, \chi \neq \chi_0} \chi(n),
$$

where (n/p) is the Legendre symbol and

$$
\vartheta_k(p) = -\frac{1}{2} \sum_{\nu=1}^{2k} \sum_{d \mid p-1, \omega(d) = \nu} \frac{\mu(d)}{d}.
$$
Defining $\xi_d = 2$ if $d = 2$ and $\xi_d = 1$ otherwise, we can write (6) in a more compact form:

$$\psi(n) \geq \vartheta_k(p) - \sum_{\nu=1}^{2k} \sum_{\substack{d|p-1 \\omega(d) = \nu \\chi^d = \chi_0}} \frac{\mu(d)\xi_d}{d} \sum_{\substack{\chi \neq \chi_0}} \chi(n).$$

Therefore,

$$W_s(p) \geq \sum_{n=0}^{p-1} \prod_{j=1}^{s} \left(\vartheta_k(p) - \sum_{\nu_j=1}^{2k} \sum_{\substack{d_j|p-1 \\omega(d_j) = \nu_j \\chi_{d_j}^d = \chi_0}} \frac{\mu(d_j)\xi_{d_j}}{d_j} \sum_{\substack{\chi_j \neq \chi_0}} \chi_j(n+j) \right)$$

$$= p\vartheta_k(p)^s - \sum_{\mathcal{J} \subseteq \{1, \ldots, s\} \setminus \emptyset} \prod_{j \in \mathcal{J}} \frac{\mu(d_j)\xi_{d_j}}{d_j} \sum_{\substack{\{\nu_j\}_{j \in \mathcal{J}} \\chi_{d_j}^d = \chi_0 \\chi_j \neq \chi_0}} \prod_{j \in \mathcal{J}} \chi_j(n+j).$$

By the Weil bound (see [5, Theorem 11.23]), the absolute value of the inner sum is at most

$$\left| \sum_{n=0}^{p-1} \prod_{j \in \mathcal{J}} \chi_j(n+j) \right| \leq \#\mathcal{J} p^{1/2}.$$

Since there are $d_j - 1$ multiplicative nonprincipal characters χ_j with $\chi_{d_j}^d = \chi_0$, we obtain

$$W_s(p) \geq p\vartheta_k(p)^s - p^{1/2} \sum_{\mathcal{J} \subseteq \{1, \ldots, s\} \setminus \emptyset} \vartheta_k(p)^s - \#\mathcal{J} \sum_{\substack{\{\nu_j\}_{j \in \mathcal{J}} \\chi_{d_j}^d = \chi_0 \\chi_j \neq \chi_0}} \prod_{j \in \mathcal{J}} \left(\omega(p-1) \right)$$

$$\geq p\vartheta_k(p)^s - p^{1/2} \sum_{\mathcal{J} \subseteq \{1, \ldots, s\} \setminus \emptyset} \vartheta_k(p)^s - \#\mathcal{J} \sum_{\substack{\{\nu_j\}_{j \in \mathcal{J}} \\chi_{d_j}^d = \chi_0 \\chi_j \neq \chi_0}} \prod_{j \in \mathcal{J}} \left(\omega(p-1) \right)$$

$$= p\vartheta_k(p)^s - p^{1/2} \sum_{\mathcal{J} \subseteq \{1, \ldots, s\} \setminus \emptyset} \vartheta_k(p)^s - \#\mathcal{J} \left(\sum_{\nu=1}^{2k} \left(\omega(p-1) \right) \right)^{\#\mathcal{J}}.$$
It is easy to verify that for any integer \(w \geq 2 \) we have
\[
\sum_{\nu=1}^{2k} \binom{w}{\nu} \leq w^{2k}.
\]

Therefore,
\[
W_s(p) \geq p \vartheta_k(p)^s - sp^{1/2} \sum_{\mathcal{J} \subseteq \{1,\ldots,s\}} \sum_{\mathcal{J} \neq \emptyset} \vartheta_k(p)^{s-\#\mathcal{J}} \omega(p-1)^{2k \#\mathcal{J}}
\]
\[
= p \vartheta_k(p)^s - sp^{1/2} \sum_{t=1}^{s} \binom{s}{t} \vartheta_k(p)^{s-t} \omega(p-1)^{2kt}.
\]

Since \(\vartheta_k(p)^{s-t} \leq \max\{\vartheta_k(p)^s, 1\} \), we finally derive
\[
W_s(p) \geq p \vartheta_k(p)^s - sp^{1/2} (\omega(p-1)^{2k} + 1)^s \max\{\vartheta_k(p)^s, 1\}. \tag{7}
\]

We now estimate \(\vartheta_k(p) \). We write
\[
\vartheta_k(p) = -\frac{1}{2} \sum_{d|p-1, d>1} \frac{\mu(d)}{d} + \sum_{\nu \geq 2k} \sum_{d|p-1, \omega(d)=\nu} \frac{\mu(d)}{d}
\]
\[
= -\frac{1}{2} \sum_{\ell \text{ prime}} \left(\prod_{d|p-1, \ell \text{ prime}} \left(1 - \frac{1}{\ell} \right) - 1 \right) + \sum_{\nu \geq 2k} \sum_{d|p-1, \omega(d)=\nu} \frac{\mu(d)}{d}
\]
\[
= \frac{1}{2} \sum_{\ell \text{ prime}} \left(\prod_{d|p-1, \ell \text{ prime}} \left(1 - \frac{1}{\ell} \right) + \sum_{\nu \geq 2k} \sum_{d|p-1, \omega(d)=\nu} \frac{\mu(d)}{d}
\]
\[
= \frac{1}{2} \varphi(p-1) + \frac{p-1}{p-1} + \sum_{\nu \geq 2k} \sum_{d|p-1, \omega(d)=\nu} \frac{\mu(d)}{d}.
\]

Recalling the assumption of the theorem, we obtain
\[
\frac{1}{2} + \sum_{\nu \geq 2k} \sum_{d|p-1, \omega(d)=\nu} \frac{\mu(d)}{d} \geq \vartheta_k(p) \geq \varepsilon + \sum_{\nu \geq 2k} \sum_{d|p-1, \omega(d)=\nu} \frac{\mu(d)}{d}. \tag{8}
\]
Furthermore,

\[
\left| \sum_{\nu \geq 2k} \sum_{\ell \mid p-1 \atop \omega(d)=\nu} \frac{\mu(d)}{d} \right| \leq \sum_{\nu \geq 2k} \sum_{\ell \mid p-1 \atop \omega(d)=\nu} \frac{1}{d} \leq \sum_{\nu \geq 2k} \frac{1}{\nu!} \rho(p)^\nu.
\]

where

\[
\rho(p) = \sum_{\ell \mid p-1 \atop \ell \text{ prime}} \frac{1}{\ell}.
\]

We now assume that

\[
k \geq e \rho(p). \tag{9}
\]

Then, by the inequality

\[
\nu! \geq (\nu/e)^\nu, \tag{10}
\]

we have

\[
\sum_{\nu \geq 2k} \frac{1}{\nu!} \rho(p)^\nu \leq \sum_{\nu \geq 2k} \left(\frac{\rho(p)}{\nu} \right)^\nu \leq \sum_{\nu \geq 2k} 2^{-\nu} = 2^{1 - 2k + 1} \leq \frac{\varepsilon}{2}.
\]

Thus, we see from (8) that with the choice (9), we have

\[
1 \geq \vartheta_k(p) \geq \frac{\varepsilon}{2}.
\]

Using also the trivial bound \(\omega(p-1)^{2k} + 1 \leq 2\omega(p-1)^{2k} \), we get that (7) simplifies to

\[
W_s(p) \geq p \left(\frac{\varepsilon}{2} \right)^s - s2^{s}p^{1/2}\omega(p-1)^{2ks}.
\]

Hence, in order for (3) to hold, it is enough to have

\[
p^{1/2} > s \left(\frac{4\omega(p-1)^{2k}}{\varepsilon} \right)^s. \tag{11}
\]

If \(\omega(p-1)^{2k} \leq 4/\varepsilon \), then it suffices that

\[
p^{1/2} \geq s \left(\frac{4}{\varepsilon} \right)^s,
\]
or, equivalently, that
\[p > s^2 \left(\frac{4}{\varepsilon} \right)^{2s} \]
holds.
Assume now that \(\omega(p - 1)^{2k} \geq 4/\varepsilon \). Hence, it suffices that the inequality
\[p^{1/2} > s\omega(p - 1)^{4ks} \]
holds. We use the inequality
\[\omega(p - 1) < 1.4 \frac{\log p}{\log \log p} \]
which is valid for all primes \(p \geq 5 \) (see, for example, [8]). Since also \(s \leq 2^s \leq 2^{ks} \) holds for all \(s \geq 1 \) and \(k \geq 1 \), it suffices that
\[p^{1/2} > \left(\frac{2^{1/4} \cdot 1.4 \log p}{\log \log p} \right)^{4ks} \].

Since
\[p \geq s^{651 s \log \log (10s)} \geq 2^{1302 \log \log 20} \tag{12} \]
we get that \(\log \log p > 6.89 > 2^{1/4} \cdot 1.4 \). Therefore it suffices that
\[\log p > 8ks \log \log p. \]

It now follows easily from the estimates in [9] that the inequality
\[\rho(p) = \sum_{\ell \text{ prime}} \frac{1}{\ell} < \log \log \log p + 1 \]
holds for all primes \(p \geq 20 \). Thus, taking \(k = \lfloor e\rho(p) \rfloor \) to satisfy (9), it is enough to guarantee that
\[\log p > 8es(\log \log p + 1 + 1/e) \log \log p. \tag{13} \]

By (12), we have that \(\log p > 100 \). For \(t > 100 \), the function
\[t \mapsto \frac{t}{(\log \log t + 1 + 1/e) \log t} \]
8
is increasing. It remains to verify that
\[\frac{\log P_0(s)}{(\log \log \log P_0(s) + 1 + 1/e) \log \log P_0(s)} > 8\varepsilon, \]
where
\[P_0(s) = s^{651s \log \log(10s)} \]
for all \(s \geq 2 \), which indeed holds and finishes the proof of Theorem 1.

References

