
Quadratic Non-Residues Versus Primitive
Roots Modulo p

Florian Luca

Instituto de Matemáticas
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C.P. 58089, Morelia, Michoacán, México
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Abstract

Given any ε ∈ (0, 1/2) and any positive integer s ≥ 2, we prove
that for every prime

p ≥ max{s2(4/ε)2s, s651s log log(10s)}

satisfying ϕ(p−1)/(p−1) ≤ 1/2−ε, where ϕ(k) is the Euler function,
there are s consecutive quadratic non-residues which are not primitive
roots modulo p.
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1 Introduction

For a prime p, we use Np and Rp to denote the sets of quadratic nonresidues
and primitive roots modulo p, respectively.

Both these sets have been extensively studied, although usually inde-
pendently from each other (see [5, 6, 7] and references therein). Relatively
less attention has been devoted to studying the set Sp = Np\Rp, which is
nevertheless is an interesting object to study as Rp ⊆ Np. We have

#Sp =
p− 1

2
− ϕ(p− 1),

where ϕ(k) is the Euler function. In particular, Rp = Np if and only if
p = 22m

+ 1 is a Fermat prime. Thus, it is natural to expect that for primes
p for which #Sp is large enough, that is, ϕ(p− 1)/(p− 1) is not too close to
1/2, the elements of Sp have some uniformity of distribution properties.

In particular, it is shown in [2] that for any real ε ∈ (0, 1/2) and any
integer s ≥ 1, for all primes

p ≥ exp
(
(2/ε)8s

)
(1)

satisfying
ϕ(p− 1)

p− 1
≤ 1

2
− ε, (2)

the set Sp contains s consecutive integers (see also [3]).
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Here, we show that in fact the same property holds starting with signif-
icantly smaller primes. Alternatively, this means that for primes p satisfy-
ing (2), there are much longer strings of consecutive integers which all belong
to Sp.

We remark that it is quite possible that the method of [1] can be used to
improve [2, Theorem 3].

2 Main Results

Theorem 1. Let ε ∈ (0, 1/2) be fixed and let s ≥ 2 be an integer. If

p ≥ max{s2(4/ε)2s, s651s log log(10s)}
is a prime satisfying

φ(p− 1)

p− 1
≤ 1

2
− ε,

then there are s consecutive integers n, . . . , n + s− 1 in Sp.

We now immediately derive the following improvement of [2, Corollary 1].

Corollary 1. Let ε ∈ (0, 1/2) be fixed and let s ≥ 2 be an integer. If

p ≥ max{s2(4/ε)2s, s651s log log(10s)}
is a prime satisfying

φ(p− 1)

p− 1
≤ 1

2
− ε,

then there are two elements a, b ∈ Sp with a− b = s.

3 Proof

Let ψ(n) be the characteristic function of Sp. It is enough to show that under
the conditions of the theorem, we have

Ws(p) > 0, (3)

where

Ws(p) =

p−1∑
n=0

s∏
j=1

ψ(n + j).
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As usual, we use ω(d) and µ(d) to denote the number of distinct prime
factors and the Möbius function of d, respectively. For d | p−1 we use ψd(n)
to denote the characteristic function of the set of dth power residues modulo
p. Finally, we use η(n) to denote the characteristic function of the set Rp.

Clearly,
ψ(n) = 1− ψ2(n)− η(n).

Then, using the inclusion-exclusion principle, we see that for any integer
k ≥ 1, the following inequality holds:

η(n) ≤ 1 +
2k∑

ν=1

∑

d|p−1
ω(d)=ν

µ(d)ψd(n).

Thus,

ψ(n) ≥ −ψ2(n)−
2k∑

ν=1

∑

d|p−1
ω(d)=ν

µ(d)ψd(n). (4)

On the other hand, ψd(n) can be expressed via multiplicative characters
of order d as

ψd(n) =
1

d

∑

χd=χ0

χ(n) =
1

d
+

1

d

∑

χd=χ0
χ6=χ0

χ(n), (5)

where χ0 is the principal character and the summation is taken over all
multiplicative characters χ whose order divides d (see [5, Section 3.1]). Sub-
stituting (5) in (4), we derive

ψ(n) ≥ ϑk(p)− 1

2

(
n

p

)
−

2k∑
ν=1

∑

d|p−1
ω(d)=ν

µ(d)

d

∑

χd=χ0
χ 6=χ0

χ(n), (6)

where (n/p) is the Legendre symbol and

ϑk(p) = −1

2
−

2k∑
ν=1

∑

d|p−1
ω(d)=ν

µ(d)

d
.
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Defining ξd = 2 if d = 2 and ξd = 1 otherwise, we can write (6) in a more
compact form:

ψ(n) ≥ ϑk(p)−
2k∑

ν=1

∑

d|p−1
ω(d)=ν

µ(d)ξd

d

∑

χd=χ0
χ 6=χ0

χ(n).

Therefore,

Ws(p) ≥
p−1∑
n=0

s∏
j=1


ϑk(p)−

2k∑
νj=1

∑

dj |p−1
ω(dj)=νj

µ(dj)ξdj

dj

∑

χd
j =χ0

χj 6=χ0

χj(n + j)




= pϑk(p)s +
∑

J⊆{1,...,s}
J 6=∅

ϑk(p)s−#J (−1)#J

∑

{νj}j∈J
1≤νj≤2k

∑

{dj}j∈J
dj |p−1

ω(dj)=νj

∏
j∈J

µ(dj)ξdj

dj

∑

{χj}j∈J
χ

dj
j =χ0

χj 6=χ0

p−1∑
n=0

∏
j∈J

χj(n + j).

By the Weil bound (see [5, Theorem 11.23]), the absolute value of the inner
sum is at most ∣∣∣∣∣

p−1∑
n=0

∏
j∈J

χj(n + j)

∣∣∣∣∣ ≤ #J p1/2.

Since there are dj−1 multiplicative nonprincipal characters χj with χ
dj

j = χ0,
we obtain

Ws(p) ≥ pϑk(p)s − p1/2
∑

J⊆{1,...,s}
J 6=∅

ϑk(p)s−#J#J
∑

{νj}j∈J
1≤νj≤2k

∑

{dj}j∈J
dj |p−1

ω(dj)=νj

1

≥ pϑk(p)s − p1/2
∑

J⊆{1,...,s}
J 6=∅

ϑk(p)s−#J#J
∑

{νj}j∈J
1≤νj≤2k

∏
j∈J

(
ω(p− 1)

νj

)

= pϑk(p)s − p1/2
∑

J⊆{1,...,s}
J 6=∅

ϑk(p)s−#J#J
(

2k∑
ν=1

(
ω(p− 1)

ν

))#J

.
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It is easy to verify that for any integer w ≥ 2 we have

2k∑
ν=1

(
w

ν

)
≤ w2k.

Therefore,

Ws(p) ≥ pϑk(p)s − sp1/2
∑

J⊆{1,...,s}
J 6=∅

ϑk(p)s−#Jω(p− 1)2k#J

= pϑk(p)s − sp1/2

s∑
t=1

(
s

t

)
ϑk(p)s−tω(p− 1)2kt.

Since ϑk(p)s−t ≤ max{ϑk(p)s, 1}, we finally derive

Ws(p) ≥ pϑk(p)s − sp1/2
(
ω(p− 1)2k + 1

)s
max{ϑk(p)s, 1}. (7)

We now estimate ϑk(p). We write

ϑk(p) = −1

2
−

∑

d|p−1
d>1

µ(d)

d
+

∑

ν≥2k

∑

d|p−1
ω(d)=ν

µ(d)

d

= −1

2
−




∏

`|p−1
` prime

(
1− 1

`

)
− 1


 +

∑

ν≥2k

∑

d|p−1
ω(d)=ν

µ(d)

d

=
1

2
−

∏

`|p−1
` prime

(
1− 1

`

)
+

∑

ν≥2k

∑

d|p−1
ω(d)=ν

µ(d)

d

=
1

2
− ϕ(p− 1)

p− 1
+

∑

ν≥2k

∑

d|p−1
ω(d)=ν

µ(d)

d
.

Recalling the assumption of the theorem, we obtain

1

2
+

∑

ν≥2k

∑

d|p−1
ω(d)=ν

µ(d)

d
≥ ϑk(p) ≥ ε +

∑

ν≥2k

∑

d|p−1
ω(d)=ν

µ(d)

d
. (8)
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Furthermore,

∣∣∣∣∣∣∣∣

∑

ν≥2k

∑

d|p−1
ω(d)=ν

µ(d)

d

∣∣∣∣∣∣∣∣
≤

∑

ν≥2k

∑

d|p−1
ω(d)=ν

1

d
≤

∑

ν≥2k

1

ν!
ρ(p)ν .

where

ρ(p) =
∑

`|p−1
` prime

1

`
.

We now assume that
k ≥ eρ(p). (9)

Then, by the inequality
ν! ≥ (ν/e)ν , (10)

we have

∑

ν≥2k

1

ν!
ρ(p)ν ≤

∑

ν≥2k

(
eρ(p)

ν

)ν

≤
∑

ν≥2k

2−ν = 2−2k+1 ≤ ε

2
.

Thus, we see from (8) that with the choice (9), we have

1 ≥ ϑk(p) ≥ ε

2
.

Using also the trivial bound ω(p − 1)2k + 1 ≤ 2ω(p − 1)2k, we get that (7)
simplifies to

Ws(p) ≥ p
(ε

2

)s

− s2sp1/2ω(p− 1)2ks.

Hence, in order for (3) to hold, it is enough to have

p1/2 > s

(
4ω(p− 1)2k

ε

)s

. (11)

If ω(p− 1)2k ≤ 4/ε, then it suffices that

p1/2 ≥ s

(
4

ε

)s

,
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or, equivalently, that

p > s2

(
4

ε

)2s

holds.
Assume now that ω(p− 1)2k ≥ 4/ε. Hence, it suffices that the inequality

p1/2 > sω(p− 1)4ks

holds. We use the inequality

ω(p− 1) < 1.4
log p

log log p

which is valid for all primes p ≥ 5 (see, for example, [8]). Since also s ≤ 2s ≤
2ks holds for all s ≥ 1 and k ≥ 1, it suffices that

p1/2 >

(
21/4 · 1.4 log p

log log p

)4ks

.

Since
p ≥ s651s log log(10s) ≥ 21302 log log 20, (12)

we get that log log p > 6.89 > 21/4 · 1.4. Therefore it suffices that

log p > 8ks log log p.

It now follows easily from the estimates in [9] that the inequality

ρ(p) =
∑

` prime
`|p−1

1

`
< log log log p + 1

holds for all primes p ≥ 20. Thus, taking k = deρ(p)e to satisfy (9), it is
enough to guarantee that

log p > 8es(log log log p + 1 + 1/e) log log p. (13)

By (12), we have that log p > 100. For t > 100, the function

t 7→ t

(log log t + 1 + 1/e) log t
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is increasing. It remains to verify that

log P0(s)

(log log log P0(s) + 1 + 1/e) log log P0(s)
> 8es,

where
P0(s) = s651s log log(10s)

for all s ≥ 2, which indeed holds and finishes the proof of Theorem 1.
.
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