A note on Mahler's Theorem - II

R. THANGADURAI* AND APARNA TRIPATHI

Harish-Chandra Research Institute, A CI of Homi Bhabha National Institute, Chhatnag Road, Jhunsi, Prayagraj 211019, India.

*Corresponding author.

Email: thanga@hri.res.in, aparnatripathi@hri.res.in

MS received 29 April 2025; revised 13 August 2025

Abstract. For an irrational number α , it is well-known that the fractional part of $m\alpha$ is dense in the interval (0,1). This in particular implies that an integral multiple of α captures a given digit in base b at least once. In 1973, K. Mahler proved that some integral multiple of a given irrational number α captures a given block B of length n in base b infinitely often. However, the integer in Mahler's result is existential and lies in an interval $[1, 2b^{n+1}]$. In this short note, we explicitly find an interval I such that for all integers $X \in I$, the given block B of length n in base b occurs in the fractional part of $X\alpha$ with some frequency, under the assumptions of appearance of block of zeroes in α . Without these assumptions, finding the explicit values of integer X seems a difficult problem.

Keywords. Borel's Conjecture; Mahler's Theorem; Normal numbers.

2010 Mathematics Subject Classification. 11K16.

1. Introduction

Let $b \ge 2$ be an integer. We say a non-zero real number α has b-ary expansion, if there exist $a_0 \in \mathbb{Z}$ and non-negative integers $a_1, a_2, \ldots, a_k, \ldots$ with $0 \le a_k \le b - 1$ such that

$$\alpha = a_0 + \frac{a_1}{b} + \frac{a_2}{b^2} + \dots + \frac{a_k}{b^k} + \dots$$
 (1)

and we write $\alpha = a_0.a_1a_2...a_n...$, where a_i for all $1 \le i$, are called *digits of* α *in base* b.

We denote, $B = a_1 a_2 \dots a_n$ to be *block of length n in base b*, formed by concatenating n-many a_k 's, with $0 \le a_k \le b - 1$. As we shall be dealing with digits of b-ary of real numbers occurring after decimal point, we shall work with $\{\alpha\}$ which denotes the *fractional part of* α . Also with $[\alpha]$, we denote the *integral part of* α .

For a given real number α satisfying (1) and an integer $m \ge 1$; for a block B in base b, with $N(\alpha, B, m)$ we denote the number of times the block B occurs in the first m digits of the base b expansion of $\{\alpha\}$. Also, *frequency of a block B* in base b expansion of $\{\alpha\}$ is denoted by ν and is defined to be;

$$\lim_{m\to\infty}\frac{N(\alpha,B,m)}{m}=\nu,$$

© Indian Academy of Sciences

It is less known about the digits or sequence of digits in the decimal expansion of a given irrational number, like $\sqrt{2}$ or π . It is comparatively easy to construct an irrational number such that in its decimal representation, certain digits or blocks of digits do not occur. The well-known theorems of Tchebychef, Kronecker, and Weyl imply that a given block of digits does occur at least once in the decimal representation of some integral multiple of a given irrational number, as the fractional part of the integral multiples of an irrational number is dense in the interval (0,1).

In 2008, B. Adamczewski and N. Rampersad [2] proved that the binary expansion of an algebraic irrational contains infinitely many occurrences of 7/3 powers. Also, every algebraic irrational contains either infinitely many occurrences of squares or infinitely many occurrences of one of the blocks 010 or 02120 in its ternary expansion.

In another direction, an important result was proved by B. Adamczewski and Y. Bugeaud [1]. We denote the function $P(\alpha, b, n)$ to be the number of distinct blocks of length n in base b which occurs at least once in the base b expansion of α . Clearly, $1 \le P(\alpha, b, n) \le b^n$. Then they proved that if α is an algebraic irrational number, then

$$\lim_{n\to\infty}\frac{P(\alpha,b,n)}{n}=\infty.$$

In 1974, K. Mahler [6] proved that if α is an irrational number, written in base b for some integer $b \ge 2$, and a given block B of length n in base b, there exists an integer X with $1 \le X \le b^{2n+1}$ such that the block B appears in the base b expansion of the fractional part of $X\alpha$ infinitely often. There were improvements in the bounds on X (see [5] and [9]). In 2017, N. K. Meher, K. Senthil Kumar and R. Thangadurai [7] proved that if the block

In 2017, N. K. Meher, K. Senthil Kumar and R. Thangadurai [7] proved that if the block of 0's of length n and followed by a non-zero digit occurs in the b-ary expansion of α with frequency ν , then there exists an integer X such that the given block B of length m (with $1 \le m \le n$) occurs in the fractional part of $X\alpha$ with the frequency at least ν/b^{m+1} .

In [7], the integer *X* is only existential. One cannot pinpoint these are the integers *X* for which the above result holds. In the following theorem, we overcome this situation.

For a block $B = b_{k-1}b_{k-2}...b_0$ in base b, we associate an integer $L(B) = b_{k-1}b^{k-1} + b_{k-2}b^{k-2} + ... + b_0$ and prove as follows.

Theorem 1. Let $b \ge 2$ and $1 \le r \le n$ be integers. Let $B = b_{r-1}b_{r-2} \dots b_1b_0$ with $b_i \ne 0$ for some $0 \le i \le r-1$ be a given block of length r in the base b. Let $\alpha \in (0,1)$ be an

irrational number with b-ary expansion as, $\alpha = \sum_{\ell=1}^{\infty} \frac{a_{\ell}}{b^{\ell}}$ where $a_{\ell} \in \{0, 1, \dots, b-1\}$ such

that for some natural number h, we have $a_{h-n-r} = a_{h-n-r+1} = \dots = a_{h-1} = 0$ and $a_h = c_{n-1}, \dots, a_{h+n-1} = c_0$. That is, the block $A = \underbrace{00 \dots 0}_{n-1} C$ where the block $C = c_{n-1}c_{n-2} \dots c_0$

with $c_{n-1} \neq 0$, occurs in b-ary expansion of α . Assume that $0 < L(C)(L(C) + 1) \leq (L(C) - L(B))b^n$. For any integer X lying in the interval $\left[\frac{b^n L(B)}{L(C)}, \frac{b^n (L(B) + 1)}{L(C) + 1}\right]$, if we

write the fractional part of $X\alpha$ in base b as $\{X\alpha\} = \sum_{\ell=1}^{\infty} \frac{z_{\ell}}{b^{\ell}}$, then

$$z_{h-n-r+1} = b_{r-1}, z_{h-n-r+2} = b_{r-2}, \dots, z_{h-n-1} = b_1, z_{h-n} = b_0.$$

Note. (1) When n = 1, we have r = 1. By the hypothesis in Theorem 1, we have $0 < a(a+1) \le (a-b_0)b$ where a = L(C) = C and $b_0 = L(B) = B$. This result proved by the second author [8]. The condition $a(a+1) \le (a-b_0)b$ restricts the choices of b_0 . However, in Theorem 1, if we choose n = 2 and n = 1, the condition $a(a+1) \le (a-b_0)b^2$ with a = L(C) and a = L

(2) Though Theorem 1 is valid for any integer $b \ge 2$, for small values of n, we have restrictions to the block B due to the presence of the condition $L(C)(L(C) + 1) \le (L(C) - L(B))b^n$.

We have the following corollary.

COROLLARY 2

Let $b \ge 2$ and $1 \le r \le n$ be integers. Let $A = \underbrace{00 \dots 0}_{n+r \text{ times}} c_{n-1} c_{n-2} \dots c_0 = \underbrace{00 \dots 0}_{n+r \text{ times}} C$ and $B = b_{r-1}b_{r-2} \dots b_0$ be blocks of digits in base b such that $0 < L(C)(L(C)+1) \le (L(C)-L(B))b^n$.

 $b_{r-1}b_{r-2}\dots b_0$ be blocks of digits in base b such that $0 < L(C)(L(C)+1) \le (L(C)-L(B))b^n$. Let $\alpha \in (0,1)$ be an irrational number with the block A occurring in b-ary expansion of α with frequency ν . Then the frequency of the block B occurring in $\{X\alpha\}$ is at least ν for all integers $X \in \left[\frac{b^n L(B)}{L(C)}, \frac{b^n (L(B)+1)}{L(C)+1}\right]$.

2. Proof of Theorems 1

Given that $\alpha \in (0, 1)$ is an irrational number written in base b as $\alpha = 0.a_1a_2 \cdots a_\ell \cdots$ and $B = b_{r-1}b_{r-2} \dots b_1b_0$ is a given block in base b. Let the block $A = \underbrace{00 \dots 0}_{r-1}c_{n-1}c_{n-2}\dots c_0 = \underbrace{00 \dots 0}_{r-1}c_{n-2}\dots c_0 = \underbrace{0$

 $\underbrace{00\dots0}_{r+r \text{ times}} C$ appear in α with the frequency ν . Assume that $h_1 < h_2 < \dots < h_i < \dots$

are the natural numbers (positions) such that $a_{h_i-n-r}=a_{h_i-n-r+1}=\cdots=0=a_{h_i-1}$ and $a_{h_i}=c_{n-1},\ldots,a_{h_i+n-1}=c_0$ for each $i=1,2,\ldots$ and they determine the frequency ν . Let m be a natural number such that $a_{h_m-n-r}=a_{h_m-n-r+1}=\cdots=a_{h_m-1}=0$ and $a_{h_m}=c_{n-1}\ldots a_{h_m+n-1}=c_0$. Let

$$s_m = \sum_{\ell=1}^{h_m - n - r - 1} \frac{a_\ell}{b^\ell}$$
 and $t_m = \sum_{\ell=h_m}^{\infty} \frac{a_\ell}{b^{\ell - h_m + n}}$.

Then $s_m \in \mathbb{Q}$ and t_m is irrational such that $t_m \in \left[\frac{L(C)}{b^n}, \frac{L(C)+1}{b^n}\right]$.

Let
$$I = \left[\frac{b^n L(B)}{L(C)}, \frac{b^n (L(B) + 1)}{L(C) + 1}\right]$$
 be the interval. Let $X \in I$ be any integer and $t \in \left[\frac{L(C)}{b^n}, \frac{L(C) + 1}{b^n}\right]$ be any irrational number. Then

$$L(B) = \frac{b^n L(B)}{L(C)} \frac{L(C)}{b^n} \le Xt < \frac{b^n (L(B) + 1)}{L(C) + 1} \frac{L(C) + 1}{b^n} = L(B) + 1$$

That is, any integer $X \in I$ satisfies [Xt] = L(B) for all irrational numbers t lying in the interval $\left[\frac{L(C)}{b^n}, \frac{L(C)+1}{b^n}\right)$

In particular, for t_m , we have $[Xt_m] = L(B)$.

By assumption

assumption
$$0 \le L(C)(L(C)+1) \le (L(C)-L(B))b^n \iff \frac{L(C)(L(C)+1)}{L(C)-L(B)} \le b^n$$

$$\iff \frac{b^n(L(B)+1)}{L(C)+1} - \frac{b^nL(B)}{L(C)} \ge 1.$$
 implies that the length of the interval I is ≥ 1 and hence there exists an integer in I .

This implies that the length of the interval I is ≥ 1 and hence We fix one such integer $X \in I$. Note that

$$\alpha = s_m + \frac{t_m}{h^{h_m - n}} \implies X\alpha = Xs_m + \frac{Xt_m}{h^{h_m - n}} = Xs_m + \frac{[Xt_m] + \{Xt_m\}}{h^{h_m - n}} = Xs_m + \frac{L(B)}{h^{h_m - n}} + \frac{\{Xt_m\}}{h^{h_m - n}}.$$

Observe that $L(B) \le b^r - 1$ and $b^{n-1} \le L(C) \le b^n - 1$. Since X is an integer in I, we get

$$X < \frac{b^n(L(B)+1)}{L(C)+1} \le \frac{b^n(b^r)}{b^{n-1}+1} < b^{r+1}.$$

Therefore, we write $X = x_r b^r + \ldots + x_1 b + x_0$ in base b, where $x_i \le b - 1$ for $i = 0, 1, \ldots, r$. Since the denominator of s_m is at most $b^{h_m - n - r - 1}$, we see that $X s_m$ cannot give any carryover to the digits in $L(B)/b^{h_m - n} = [Xt_m]/b^{h_m - n}$. Note also that $\{X\{\alpha\}\} = \{X\alpha\}$. Therefore, we get

$$\{X\alpha\} = \sum_{\ell=1}^{h_m - n - r - 1} \frac{d_\ell}{b^\ell} + \frac{L(B)}{b^{h_m - n}} + \frac{\{Xt_m\}}{b^{h_m - n}} \tag{2}$$

for some $d_i \in \{0, 1, \dots, b-1\}$. Since $L(B) = b_{r-1}b^{r-1} + \dots + b_1b + b_0$, we see that

$$\frac{L(B)}{b^{h_m-n}} = \frac{b_{r-1}b^{r-1} + \dots + b_1b + b_0}{b^{h_m-n}} = \frac{b_{r-1}}{b^{h_m-n-r+1}} + \dots + \frac{b_1}{b^{h_m-n-1}} + \frac{b_0}{b^{h_m-n}}$$

For an integer $w \neq m$, we follow the above procedure to get

$$\{X\alpha\} = \sum_{\ell=1}^{h_w - n - r - 1} \frac{e_\ell}{b^\ell} + \frac{L(B)}{b^{h_w - n}} + \frac{\{Xt_w\}}{b^{h_w - n}}$$
(3)

for some $d_i \in \{0, 1, \dots, b-1\}$. Since $\{X\alpha\}$ is an irrational number, it has a unique expansion in base b. Therefore, by (1) and (3), we must have

$$\{X\alpha\} = \sum_{\ell=1}^{h_w - n - r - 1} \frac{e_\ell}{b^\ell} + \frac{L(B)}{b^{h_w - n}} + \frac{\{Xt_w\}}{b^{h_w - n}} = \sum_{\ell=1}^{h_m - n - r - 1} \frac{d_\ell}{b^\ell} + \frac{L(B)}{b^{h_m - n}} + \frac{\{Xt_m\}}{b^{h_m - n}}$$

and each respective digit is the same. Thus, we conclude that if the base b expansion of $\{X\alpha\}$ is

$$\{X\alpha\} = \sum_{\ell=1}^{\infty} \frac{z_{\ell}}{b^{\ell}}$$

then $z_{h_{\ell}-n-r+1} = b_{r-1}, z_{h_{\ell}-n-r+2} = b_{r-2}, z_{h_{\ell}-n} = b_0$ for each integer $\ell \ge 1$. Moreover, we see that the above procedure holds for any integer $Y \in I$. This proves the theorem.

3. Proof of Corollary 2

Let $\alpha = \sum_{\ell=1}^{\infty} \frac{a_{\ell}}{b^{\ell}}$ be the base *b* representation of the given irrational number α .

Since the block $A = \underbrace{00 \dots 0}_{n+r \text{ times}} c_{n-1} c_{n-2} \dots c_0 = \underbrace{00 \dots 0}_{n+r \text{ times}} C$ occurs in α with a frequency ν ,

we have

$$\lim_{m \to \infty} \frac{N(\alpha, A, m)}{m} = \nu. \tag{4}$$

Let $X \in \left[\frac{b^n L(B)}{L(C)}, \frac{b^n (L(B) + 1)}{L(C) + 1} \right]$ be a given integer. Then, we need to prove

$$\lim_{m \to \infty} \frac{N(X\alpha, B, m)}{m} \ge \nu. \tag{5}$$

Let $\epsilon > 0$ be any given real number. Since the block A occurs in α with the frequency ν , by (4), there exists a constant M_0 such that

$$N(\alpha, A, m) \ge (\nu - \epsilon)m$$
 (6)

for every $m \ge M_0$. Take any integer $m \ge M_0$. By (6), in the first m digits of the base b representation of α , the block $A = \underbrace{00 \dots 0}_{i=1} C$ occurs in the positions $a_{h_i - n - r} = a_{h_i - n - r + 1} = a_{h_i - n - r + 1}$

 $a_{h_i-1} = 0$ and $a_{h_i} = c_{n-1}, a_{h_i+1} = c_{n-2}, \dots, a_{h_i+n-1} = c_0$ for all $i = 1, 2, \dots, \ell_m$ where $\ell_m = [(\nu - \epsilon)m]$, the integral part of $(\nu - \epsilon)m$. By Theorem 1, if we write $\{X\alpha\}$ in base b representation as $\{X\alpha\} = \sum_{\ell=1}^{\infty} \frac{d_\ell}{b^\ell}$, then we get

$$d_{h_i-n-r+1} = b_{r-1}, d_{h_i-n-r+2} = b_{r-2}, \dots d_{h_i-n} = b_0$$
 for all $i = 1, 2, \dots, \ell_m$.

Therefore, we get

$$N(X\alpha, B, m) \ge \ell_m = \lceil (\nu - \epsilon)m \rceil \ge (\nu - \epsilon)m - 1 = (\nu - \epsilon - 1/m)m.$$

This is true for all $m \ge M_0$. Therefore, we get

$$\lim_{m \to \infty} \frac{N(X\alpha, B, m)}{m} \geq \lim_{m \to \infty} (\nu - \epsilon - 1/m) = \nu - \epsilon$$

holds for any $\epsilon > 0$. Therefore (5) holds true and proves the corollary.

Acknowledgement

We would like to thank the referee for going through the manuscript very carefully.

References

- [1] Adamczewski B and Bugeaud Y, On the complexity of algebraic numbers I, Expansions in integer bases, *Ann. of Math.*, **165** (2007), 547-565.
- [2] Adamczewski B and Rampersad N, On patterns occurring in binary algebraic numbers, *Proc. Amer. Math. Soc.*, **136** (2008) (9), 3105-3109.
- [3] Borel E, Les probabilités dénombrables et leurs applications arithmétiques, *Rend. Math. Soc.*, **8** (1909), 247-271.
- [4] Borel E, Sur les chiffres décimaux de $\sqrt{2}$ et divers problmes de probabilités en chaine, *C. R. Acad. Sci. Paris*, **230** (1950), 591-593.
- [5] Berend D and Boshernitzan M. D, On a result of Mahler on the decimal expansions of $(n\alpha)$, *Acta Arith.*, **66** (1994) (4), 315-322.
- [6] Mahler K, Arithmetical properties of the digits of the multiples of an irrational number, *Bull. Austral. Math. Soc.*, **8** (1973), 191-203.
- [7] Meher N. K, Senthil Kumar K and Thangadurai R, On a theorem of Mahler, *Proc. Amer. Math. Soc.*, **145** (2017) (11), 4607-4615.
- [8] Tripathi A, Note on Mahler's Theorem, Math. Student, 94 (1-2) (2025), 194-199.
- [9] Volkmann B, On numbers containing each block infinitely often, *J. Reine Angew. Math.*, **339** (1983), 199-206.