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Abstract

It is shown under Schinzel’s Hypothesis that for a given £ > 1, there are infinitely
many k such that a product of k consecutive integers each exceeding k is divisible by
exactly T(2k) — ¢ prime divisors.
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1 Introduction
For n > 0,k > 0 integers, we define
A(n,k)=n(n+1)(n+2)---(n+k—1). (1)

Let ®(n) denote the number of distinct prime divisors of n and 7(x) the number of primes
p < x for any given real number x > 1. We write p; =2, p» = 3,... and p,, the r-th prime.

Letn=k+1in(1). Then we have A(k+ 1,k) = (k+1)(k+2)--- (2k). Since k! divides
A(k+ 1,k), clearly, we have

o(A(k+ 1,k)) = (k) + m(2k) — n(k) = m(2k). ()

Hence, it is natural to ask the following question.
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Question 1. For any given integer ¢ > 1, can we find infinitely many pairs (n,k) with n > k
such that

o(A(n,k)) =m(2k) —£? 3)
First we observe that the answer to Question 1 is true when ¢ = 1. For this putn = k+2

in (1) and consider

2k+1
A(k+2,k) = A(k+1,k) jl

It suffices to find infinitely many values of k satisfying
(1) k+1is a prime and
(i) 2k+ 1 is a composite number.

Let k+ 1 be a prime of the form 3r+2. Then 2k+ 1 = 3(2r+ 1) is composite. Since
there are infinitely many primes of the form 3r+ 2, we see that there are infinitely many &
for which k+ 1 is prime and 2k + 1 is composite. Thus Question 1 is true when ¢ = 1.

For a given ¢, a method to construct pairs (n, k) satisfying (3) has been given in [1]. In
particular, it has been observed in [1] that (3) holds if

(n,k) €{(74,57), (284,252), (3943,3880) } when
(n,k) €{(3936,3879),(3924,3880), (3939,3880)} when
(n,k) €{(1304,1239),(1308,1241),(3932,3879)} when
(n,k) €{(3932,3880), (3932,3881),(3932,3882)} when

S & &
I

I
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Before we state our result, we need the following hypothesis.

Schinzel’s Hypothesis. ([2] and [3]) Let f.(x) = a,x + b, be non-constant polynomials
with a, > 0 and b, are integers for every r = 1,2,... L. If for every prime p, there exists an
integer n such that p doesn’t divide f\(n) fa(n) --- fi(n), then, there exist infinitely many
integer values, say, x1, Xy, ..., satisfying

fi(x) = q1, () =qa, ., folx}) = qu
forall j=1,2,... where g;’s are prime numbers.

For a given positive integer £ > 2, we first let

A:Hp

p<L

and we enumerate all the positive integers > 1 which are coprime to A as a; <ap; < -+ <
a, < ---. We define

e szjin{aj-M—l —aj : j= 1,2,...}

Clearly, from the definition, we have Ay > 2(¢ — 1) and we put
R=R/=N+1.

We show that Schinzel’s Hypothesis confirms Question 1. In fact, we prove
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Theorem 1. Assume Schinzel’s Hypothesis and let £ > 2 be an integer. Then there are
infinitely many values of k such that

O(A(k+2R,k)) = (2k) — £. 4)

Remark. In the statement of Theorem 1, the value 2R cannot be replaced by a smaller
value. If there is a smaller value L < 2R for which Theorem 1 is true, then it will contradict
the minimality of A,. This is clear from (4) with 2R replaced by 2S such that § < R and
(2). Further, in view of Theorem 1, it is of interest to compute R, and we compute Ry for
2 < ¢ <100 in Section 3. We thank the referee for his remarks on an earlier draft of this

paper.

2 Proof of Theorem 1

For any given positive integer £ > 2, let M = A,. Therefore, by the definition of M, we get
integers a; > /+1 and a1 such thata;,y_1 —a; = M and hence a;_1 = M + p; for
some positive integer j. So, the sequence a;,1+4-a;,...,M +a; contains exactly £ integers
which are coprime to A. In other words, we have a+1=aj,a+2,....,.a+M+1=a;+M
contains ¢ integers which are coprime to A. In this new notation, we denote the set of those
£ coprime integers to A to be

P={a+x(1),a+x(2),...,a+x(¢)},

where x(1),x(2),...,x(¢) are some odd integers not exceeding M + 1 = R.
We write

(2k+1)(2k+3)--- (2k+2R—1)
(k+R)(k+R+1)---(k+2R—1)"

A(k+2R, k) = A(k+1,k) x 2871 x
We put
Bo={(k+(R—-1)+1),(k+(R—1)+2),...,(k+(R—1)+R)}.
Then By contains at most [(R+ 1)/2] even integers. We omit these numbers from By and

name the remaining set as By. Clearly, By contains k+ (R— 1) +x(r) with r = 1,2,... L.
Let B, be the subset of B obtained by deleting these elements. Further we put

B={x—k—(R—1) : x€By}

so that |B| = |B,|. We order the elements of B as iy <ip <+ <ijp,|.
Now, we choose primes P;,g; satisfying the conditions

(1) 4AR< Py < P3 < --- < P)p_1 and;

(i) Por—1 <q1 <q2 <+ <{qp,;
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(iii) We consider the following system of congruences

2x+1=0 (mod P;)
2x+3=0 (mod P3)

2x+2R—1=0 (mod Pr_1)
x—l—(R— 1)+lj =0 (mod qj) Vij € B.
By the Chinese Remainder Theorem, we have infinitely many common solutions of the
form
R |B|
k=b+MAQ; forall AeZ and Q=[]Pu-1]]4
i=1

i=1

for some positive integer b.
Under Schinzel’s hypothesis, we shall prove that there are infinitely many choices for A
such that

k+R—1+x(1),k+R—1+x(2),....k+R—1+x(()

are prime numbers.
Now, we use Schinzel’s hypothesis with the polynomials

(X)=0X+b+R—1+x(r) forr=1,2,...,¢

We only need to show that if g is any prime number and
‘ ¢
p(X) =T/ &) =]](@X +b+R—1+x(r)),

r=1 r=1

then there exists A € Z such that ¢ does not divide p(A).
Let g be any prime number. Then we have the following cases.

Case 1
(¢,0)=1.

Subcase (i)

q<A{.
In this case, we see that g|A. Since (¢,0) = 1, we choose A such that k+R—1 =
AMO+b+R—1=a (mod q). Therefore, for every r = 1,2,...,¢, we have

k+R—1+x(r)=a+x(r) (mod g).

Since a + x(r) is coprime to g, clearly, g cannot divide p(A).
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Subcase (ii)

qg>Y.

In this case, clearly, {—(b+R — 14 x(r))}'_, covers only ¢ residue classes modulo g.
Since g > /, there exists a residue class ¢ modulo ¢ which is not covered. Since (¢,0) =1,
choose A such that

MO =c (mod q).

Since c is not one of the {—(b+R—1+x(r))}'_,, we have
k+R—1+x(r)=X0+b+R—1+x(r)=c+b+R—1+x(r)#Z0 (mod q)

for r =1,2,...,¢. Therefore g does not divide p(A) for this choice of A.

Case 2
qQ
Suppose g = g; for some j = 1,2,...,|B,|. If possible, ¢ divides p(A) for all choices of
A. Then
k+R—14x(r)=0 (mod g;) for some r.
Note that by the definition of g;, we have,
k+R—1+i;=0 (mod g;).
Hence, we get
k+R—1+4+x(r)=k+R—1+i; (modgq;) = x(r)=i; (mod g;).
As g; > 4R and x(r),i; € {1,2,...,R}, the above congruence implies that
x(r) =1

which is not possible by the definition of B. Hence, g does not divide p(A) for some choice
of A.

Suppose ¢ = P; for some i = 1,3,...,2R — 1. If possible, we assume that ¢ divides p(A)
for all A € Z. Then

k+R—1+x(r)=0 (mod P;) for some r.

By the definition of P;, we have 2k +m =0 (mod P;) for some odd integer m < 2R — 1.
Combining the above two congruences, we get,

2(R—1+x(r))=m (mod P;).
But since R— 1 +x(r) <2R—1,m <2R— 1 and P, > 4R, the above congruence implies

2(R—14x(r)) =m,
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which is a contradiction because m is an odd integer. Hence, ¢ does not divide p(A) for
some choice of A.

In all the cases, if g is any prime, then ¢ does not divide p(A) for some choice of A.
Hence, by Schinzel’s Hypothesis, we get infinitely many values of £ such that

k+R—-1)+x(1),k+(R—1)+x(2),....k+(R—1)+x(r)
are all primes. Thus we arrive at
O(A(k+2R,k)) =(2k) — £.

This completes the proof of Theorem 1. O

3 Computation of R, with 2 < / <28

The computation of R, depends on the following lemmas.
Lemma 3.1. For each integer j > 1 and m > 1, we have
aj+mA = ajimya)-

Proof. Let by, by, ... by be the positive integers which are coprime to A and 1 <b; <A
for every i. Then, for each integer m > 1, we have mA+ 1 < b; + mA < (m+ 1)A and
mA + b; are coprime to A for every i = 1,2,...,0(A). If a is any integer such that mA + 1 <
a < (m+1)A and a # b; +mA, then, a = b+ mA where b # b; forall i = 1,2,...,¢(A) and
b < A. Therefore, by the definition of b, (b,A) > 1 and hence (a,A) > 1. Hence, b; + mA
(i=1,2,...,0(A)) are, precisely, those integers which are in the interval [mA+ 1, (m+1)A]
and coprime to A. Thus, we enumerate all the positive integers which are coprime to A as

by <by <+ <bypa) <b1+A<by+A < <bya+A<bi+2A<by+2A<---
Let ()7 ¢(4)+1 be given by
boar1 = bi +A,byays2 = br+A, ...
so that the sequence (b;);-; satisfies
a;j=Dbirfori>1.

We observe that for j > 1,
bj+mA=bjimya)

implying
aj+mA=Dbj 1 +mA=Dj 1 mpa) = Qjrmo(A)-

This completes the proof of Lemma 3.1. O

Lemma 3.2. For each integer £ > 2, we have

M=min{aj1—a; : j=12,...,0(A)}.
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Proof. Assume that j > 0(A). Then we can write j = m(A) + i for some integer m > 1
and 1 <i < ¢(A). Therefore, by Lemma 3.1,

Ajpi—1 = Amy(A)+i+0—1 = Aitt—1 T MA

and hence
Ajio—1—0a;=ajrg-1 +MA—a;—mA=aj 1 —a

for some i satisfying 1 <i < ¢(A). Thus, to find Ay, it is enough to find the minimum values
of ajro—1—a;foralli=1,2,...,0(A). O
Case (a). £ =2
In this case, A = 2 and hence ¢(A) = 1. So, by Lemma 3.2, we see that A, = a, —a; =2
and R = 3.
Case (b). { =3,4
We have A = 6 and hence ¢(A) =2 and a; =5,a, = 7,a3 = 11,a4 = 13,a5 = 17. Therefore
A3 =min{a3 —aj,as —ax} =min{11-5,13—-7} =6, R=7
7\,4 = min{a4 —aj,das —az} = min{13 —5, 17—7} = 8, R=28.
Case (¢). £ =5,6
In this case, A = 30 and hence ¢(A) = 8. We have

a1 ="T,ay=11,a3=13,a4 =17,a5 = 19,a6 = 23,a7 =29,
ag = 31,(19 = 37,a10 :41,a11 :43,6112 :47,(113 =49,

Therefore
As =min{a;4—a;: 1 <i<8} =12, R=13
7\16 :min{ai+5 —da; . 1<i< 8} = 16, R=17.
Case (d). £ >7

Let {1 < ¢ < ¢, where {1, are consecutive primes. Then Ay = Ay, = A. Define ap = 1,

521 = {a: 1<a<Aand gcd<a, H p) = 1} ={ao}U{a,az,...,apa)-1}
p<ty
and

Sél :Sgl U{A+a;:0<i<b}={ap}U{aj,ay,... 1 Ao(A)—1,A(A)s - - - ,aq,(A)Jrgz,l}.

Note that aga) = A+ 1 and if ged(A +a,[],<,, p) = 1. then a € S?l. To compute A, for
£ <0 < {4y, we take the subset of § }1 containing the first ¢(A) + ¢ — 1 elements and compute

M=min{aj 1 —a; : j=12,...,0(A)}.
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I4 A d(A) A | @ dy(a) Ag(A) 101
6 30 8 16 | 7 31 49

7 210 48 20 | 11 211 239

8 210 48 26 | 11 211 241

9 210 48 30 |11 211 247

10 210 48 32 |11 211 251

11 2310 480 36 | 13 2311 2357

12 2310 480 42 | 13 2311 2363

13 30030 5760 48 | 17 30031 30091
14 30030 5760 50 | 17 30031 30097
15 30030 5760 56 | 17 30031 30101
16 30030 5760 60 | 17 30031 30103
17 510510 92160 66 | 19 510511 510593
18 510510 92160 70 | 19 510511 510599
19 | 9699690 1658880 | 76 | 23 | 9699691 9699791
20 | 9699690 1658880 | 80 | 23 | 9699691 9699793
21 9699690 1658880 | 84 | 23 9699691 9699797
22 | 9699690 1658880 | 90 | 23 9699691 9699799
23 | 223092870 | 36495360 | 94 | 29 | 223092871 | 223092997
24 | 223092870 | 36495360 | 100 | 29 | 223092871 | 223093001
25 | 223092870 | 36495360 | 110 | 29 | 223092871 | 223093007
26 | 223092870 | 36495360 | 114 | 29 | 223092871 | 223093009
27 | 223092870 | 36495360 | 120 | 29 | 223092871 | 223093019
28 | 223092870 | 36495360 | 126 | 29 | 223092871 | 223093021

Suppose we have computed S?l , S}] and we would like to compute ng , S}z. Divide Ay, =
Aas

%)
A A
0,A] = — 1))
04 ,~_U1<(l )527l€2>
Note that A/¢y = Ay,. If A/¢, = r( mod ¢,), then

153

A

522 = U {(i— I)E +a;:a; € S(E)l andr(i—1)+a; # (modﬁz)}
i=1

={ao =1} U{ar,az,...,a4a)}-
We now take
Sp, = S0 U{A+a;:0<i< (3} ={ag,ai,az,...,apm)—1,p(4):- - - do(A)+ 51}
where /3 > {5 is the prime next to ¢,. Finally we compute

M=min{aj1—a; : j=12,...,0(A)}.
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For 7 < ¢ < 18, computing ;’s and A, were fast and we list the values in the following
table. For 19 < /¢ < 22, we start with ¢; = 17,4, = 19 to compute A,. For 23 < /¢ < 28, we
take ¢; = 19,4, = 23 and compute A,. We stop at £ = 28 since computations increase ex-
ponentially when we go to the next prime. Here we list the values of £,A,0(A), s, a1, ag(a)
and Ag(A)+0-1 for 6 < ¢/ <28.
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