
SOME DENSITY QUESTIONS AND AN APPLICATION

R. THANGADURAI

Abstract. Let S = {a1, a2, · · · , a`} be a finite set of non-zero integers. Re-
cently, R. Balasubramanian et al., ([2], 2010) computed the density of those
primes p such that ai is a quadratic residue (respectively, non-residue) modulo
p for every i. As an application of this result, the proved an exact formula for
the degree of the multi-quadratic field Q(

√
a1,
√

a2, . . . ,
√

a`) over Q. In this
lecture notes, we give an expository of the above result together with all the
preliminaries that needed.

1. Introduction

Let S = {a1, a2, . . . , a`} be a finite set of non-zero integers.

In 1968, M. Fried [3] answered that there are infinitely many primes p for
which a is a quadratic residue modulo p for every a ∈ S. Also, he provided a
necessary and sufficient condition for a to be a quadratic non-residue modulo p for
every a ∈ S. More recently, S. Wright [13] and [14] also studied this qualitative
problem.

For a given prime p, the set of all quadratic non-residue modulo p is a disjoint
union of the set of all generators g of (Z/pZ)∗ (which are called primitive roots
modulo p) and the complement set contains all the non-residues which are not
primitive roots modulo p.

In 1927, E. Artin [1] conjectured the following;

Artin’s primitive root conjecture. Let g 6= ±1 be a square-free integer. Then
there are infinitely many primes p such that g is a primitive root modulo p.

Note that it is not even known that for a given square-free integer, g 6= ±1,
there exists a prime p such that g is a primitive root modulo p. The above
Artin’s conjecture asks for the existence infinitely many such primes. In 1967,
Hooley [6] proved this conjecture assuming the (as yet) unresolved genearlized
Riemann hypothesis for Dedekind zeta functions of certain number fields. In
1983, R. Gupta and M. R. Murty [4] made the first breakthrough by showing
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the following: given three prime numbers a, b, c, then at least one of the thirteen
numbers {

ac2, a3b2, a2b, b3c, b2c, a2c3, ab3, a3bc2, bc3, a2b3c, a3c, ab2c3, abc
}

is a primitive root modulo p for infinitely many primes p. Then later Heath-
Brown [5] proved that {a, b, c} one is primitive root modulo p for infinitely many
primes p. Similarly, using the method of Hooley, in 1976, K. R. Matthews [10]
found a necessary and sufficient condition for a to be primitive root modulo p for
every a ∈ S, under unproved hypothesis.

Analogue question for a non-residue which is not a primitive root modulo a
prime is relatively easier to handle. For example, in [11] it is proved that for
a given g which is not a perfect square of an integer, there are infinitely many
primes p for which g is a quadratic non-residue but not a primitive root modulo
p, using the arithmetic of certain number fields. Of course computing the density
of such primes is not done yet.

From basic field theory, it is well-known that the degree of the multi-quadratic
field

K = Q(
√
a1,
√
a2, . . . ,

√
a`)

over Q is 2t for some integer 0 ≤ t ≤ `, depending on the algebraic cancellations
among the

√
ai’s. The arithmetic of multi-quadratic number fields plays a crucial

role in the theory of elliptic curves. See for instance Hollinger [7] and Laska-
Lorenz [9].

When ai = pi, distinct prime numbers, then it is well-known that the degree
of [K : Q] = 2` = 2|S|; in our notation, t = ` = |S|. On the other hand, when
S = {2, 3, 6}, the degree of [K : Q] = 22 < 2|S|; thence t = 2 = |S| − 1.

In this paper, we provide a complete answer by computing the number t in
terms of the given inputs ai’s. Before we state the theorems, we must first present
some notations.

Throughout the paper, we write p, q for prime numbers, x for a positive real
number, and π(x) for the number of primes p ≤ x. A set P of prime numbers is
said to have the relative density ε with 0 ≤ ε ≤ 1, if

ε = lim
x→∞

|P ∩ [1, x]|
π(x)

exits. Also, the following numbers count some special subsets of S.

(i) Let αS denote the number of subsets T of S, including the empty one,

such that |T | is even and
∏
s∈T

s = m2 for some integer m; hence, αS ≥ 1

for every S.
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(ii) Let βS denote the number of subsets T of S such that |T | is odd and∏
s∈T

s = m2 for some integer m.

Then the following theorems were proved by R. Balasubramanian, F. Luca and
the author [2].

Theorem 1. ([2], 2010) The relative density of the set of prime numbers p for
which a is a quadratic residue modulo p for every a ∈ S is

αS + βS

2`
.

Theorem 2. ([2], 2010) We have, βS = 0 if and only if the density of the set of
primes p for which a is a quadratic non-residue modulo p for every a ∈ S is

αS

2`
.

As an application of Theorem 1, we prove:

Theorem 3. ([2], 2010) For a given finite set S of non-zero integers with |S| = `,
we have,

[K : Q] = 2`−k,

where k is the non-negative integer given by 2k = αS+βS. In other words, t = `−k.

2. Preliminaries

Lemma 1. We have αS + βS = 2k for some integer k ≤ `.

Proof. Let V = (Z/2Z)` be the Z/2Z-vector space having a1, . . . , a` as a ba-
sis. Let W be the Z/2Z-vector space Q∗/(Q∗)2, where the addition modulo
2 is defined as multiplication modulo squares. Let τ : V 7−→ W be given
by τ(ai) = ai (mod (Q∗)2) and extended by linearity. It is then clear that
{i1, . . . , ij} ⊆ {1, . . . , `} is such that ai1 · · · aij is a perfect square of an integer if

and only if ai1 + · · ·+aij ∈ Ker(τ). It now follows immediately that αS +βS = 2k,
where k is the dimension of Ker(τ), and `− k is the dimension of the image of τ
in W . �

For an integer a and odd prime p we write

(
a

p

)
for the Legendre symbol of

a with respect to p. Let n > 1 be an integer and m be an integer such that
1 ≤ m ≤ n and (m,n) = 1. Let π(x, n,m) be denote the number of primes
p ≤ x and p ≡ m (mod n) and φ(n) denote the Euler Phi-function which counts
the number of integers m with 1 ≤ m ≤ n and (m,n) = 1. Then Siegel-Walfisz
theorem states as follows.
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Siegel-Walfisz Theorem. (see e.g., [12], Satz 4.8.3) For any A > 1, we have

π(x, n,m) =
π(x)

φ(n)
+O

(
x

(log x)A

)
holds for all large enough x.

Proposition 1. Let n be any integer which is not a perfect square. Then the
estimate ∑

p≤x

(
n

p

)
= o(π(x)),

holds as x→∞.

Proof. Define a map
χ : (Z/nZ)∗ −→ {±1}

by

χ(m) =
( n
m

)
for every 1 ≤ m ≤ n, (m,n) = 1,

where
(

n
m

)
is the Kronecker symbol. Note that when m = 1, we define χ(1) = 1.

By the multiplicativity of the Kronecker symbol, it is clear that χ is a character
modulo n. Hence, by the orthogonality relation, we get∑

1≤m≤n
(m,n)=1

χ(m) = 0.

For simplicity, we define, ∑
m (mod n)∗

:=
∑

1≤m≤n
(m,n)=1

.

Now, consider∑
p≤x

(
n

p

)
=

∑
` (mod n)∗

∑
p≡` (mod n)

p≤x

(n
`

)
=

∑
` (mod n)∗

∑
p≡` (mod n)

p≤x

χ(`).

By interchanging the summation, we get,∑
p≤x

(
n

p

)
=

∑
` (mod n)∗

χ(`)π(x, n; `),

where π(x, n, `) denotes the number of primes p ≡ ` (mod n) and p ≤ x. Walfisz’s
Theorem implies that for any fixed integer A > 1, we have

π(x, n, `) =
π(x)

φ(n)
+O

(
x

(log x)A

)
for every large enough x. Therefore, we get,∑

p≤x

(
n

p

)
=
π(x)

φ(n)

∑
` (mod n)∗

χ(`) +O

(
φ(n)x

(log x)A

)
.
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By the orthogonality relation, we, further, get,∑
p≤x

(
n

p

)
= O

(
φ(n)x

(log x)A

)
= o(π(x)).

Hence the proposition. �

Now, we review the algebraic number theory that are needed to prove the main
theorem.

Let K/Q be a finite extension over Q. That is, K is a field and as a vector
space over Q, it is finite dimentional and its dimension is denoted by [K : Q]. Let
OK be the maximal proper subring of K such that K is the quotient field of OK .
By Dedekind domain theory, it is well-known that OK is a Dedekind domain and
it is called ring of integers of K. For example, when K = Q, OK = Z.

In OK , every ideal a is uniquely expressed as a product of prime ideals in it.
Let p ∈ Q be a rational prime. Then the principal ideal

(*) pOK = pe1
1 · · · peg

g

where pi’s are distinct prime ideals of OK and ej ≥ 0 are integers. Also, it is
known that the quotient ring OK/pi is a finite field extension over Z/pZ and
dimension is denoted by fi’s. It is well known result that

[K : Q] =

g∑
i=1

eifi.

In particular,

g∑
i=1

ei ≤ [K : Q].

A rational prime p ∈ Q is said to be
• ramified if ei ≥ 2 for some i in (*)
• unramified if ei = 1 for all i in (*)
• splits completely if ei = 1 and fi = 1 for all i in (*); In this case, we get

[K : Q] = g.

Note that when K is a quadratic extension over Q, then by the above condition,
we have following situations.

(1) pOK = p2; (ramifies)
(2) pOK = pq with p 6= q; (splits completely)
and (3) pOK = p (inert)

Proposition 2. Let d be any square-free integer and let K = Q(
√
d) be a qua-

dratic extension over Q. Then for any odd prime p ≥ 3, we have

(i) p ramifies in OK if and only if p|d;

(ii) p splits completely in OK if and only if
(

d
p

)
= 1, or d is a square modulo

p.
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(iii) p is inert in OK if and only if
(

d
p

)
= −1, or d is not a square modulo p.

Let K/Q be a finite Galois extension with Galois group G = Gal (K/Q). Let
OK be the ring of integers of K. First let us recall some groups that are associated
with the prime ideals of OK .

Let p be a prime ideal of OK , Then note that for any σ ∈ G, if

σ(p) := {x ∈ OK : x = σ(y) for some y ∈ p} ,

then σ(p) is a prime ideal in OK . We define

Dp := {σ ∈ G : σp = p} .

Then Dp forms a group under composition of maps and becomes a subgroup of
G. This subgroup is called the decomposition group of G. Let g = [G : Dp] denote
the index of Dp. Then

G =

g⋃
i=1

σiDp,

where σi(p) = pi, a conjugate of p. Hence Dp gives the information about prime
p ∈ Q splits in K. More precisely, the prime p ∈ Q splits into g prime ideals in
OK . If σ ∈ Dp, and x− y ∈ p, then

σ(x− y) = σ(x)− σ(y) ∈ σ(p) = p.

That is, if

x ≡ y (mod p) for all x, y ∈ OK , then we have
σ(x) ≡ σ(y) (mod p).

Therefore every σ ∈ Dp takes congruences class modulo p to congruence class
modulo p. This defines an automorphism σ ∈ Aut(OK/p). Let p ∈ Q be a
rational prime number such that pOK ⊂ p, we have a map

Dp → Gal (OK/p | Z/pZ) .

This automorphism turns out to be surjective. (The surjectivity is non-trivial,
see for instance, G. Janusz [8], Algebraic Number fields, pg. 95). The kernal of
this surjection is called Inertia group, denoted by Ip. Therefore,

Ip = Ker {Dp → Gal (OK/p|Z/pZ)}
= {σ ∈ Dp : σ = 1}
= {σ ∈ Dp : σ(x) ≡ x (mod p) for all x ∈ OK}

Therefore,

Gal (OK/p | Z/pZ) ∼= Dp/Ip.
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It is well-known that OK/p is a finite extension of the finite field Z/pZ. Therefore
its Galois group Gal (OK/p | Z/pZ) is cyclic and it is generated by the Frobe-
nious element σp which is uniquely determined by the condition

σp(x) ≡ xp (mod p) for all x ∈ OK .

Corresponding to this map, we have an element in Dp/Ip which is denoted by[
K/Q

p

]
and so

Dp/Ip =<

[
K/Q

p

]
> .

Note that if p is unramified, then for all prime ideal p such that pOK ⊂ p, we
have Ip = {1}. Therefore,

Dp
∼= Gal (OK/p | Z/pZ) .

Hence for all unramified primes p, we have Dp is cyclic for all prime ideal pOK ⊂ p

and

[
K/Q

p

]
is unique and completely determined by the condition[

K/Q
p

]
x ≡ xp (mod p) for all x ∈ OK .

Also, if p, q are the two prime ideals such that pOK ⊂ p, q, then[
K/Q

q

]
= σ−1

[
K/Q

p

]
σ

where σ ∈ G such that σ(p) = q. This is because, for σ ∈ G and σp = q, we
have, [

K/Q
p

]
x ≡ xp (mod p) for all x ∈ OK

σ

[
K/Q

p

]
x ≡ σ(xp) (mod σp) for all x ∈ OK

σ

[
K/Q

p

]
x ≡ (σ(x))p (mod q) for all x ∈ OK

σ

[
K/Q

p

]
σ−1(x) ≡ xp (mod q) for all x ∈ OK

In the last step, we replace x by σ−1(x). Therefore,

[
K/Q

q

]
= σ

[
K/Q

p

]
σ−1.

Therefore when p ranges over the prime ideals of OK lying above the rational

prime p, the

[
K/Q

p

]
ranges over its conjugacy class in Gal(K/Q) that depends

only on p. Thus, for each rational prime p, we define the Frobenious element,
σp ∈ Gal(K/Q), which generates Dp/Ip for some prime ideal p lying above p.
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The following theorem computes the density of primes p such that the corre-
sponding Frobenious element σp lies in a given conjugacy class of G. This is a
far reaching generalization of Dirichlet’s Prime Number Theorem in arithmetic
progressions.

Chebotarev’s Density Theorem. Let K/Q be a Galois extension with Galois
group G. Let C be a given conjugacy class of G. Then the relative density of the

set of primes P = {p : σp ∈ C} is
|C|

[K : Q]
.

3. Proof of Theorems

Proof of Theorem 1. Let P(S) be the set of all distinct prime factors of
a1a2 · · · a`. Clearly, |P(S)| is finite. Let x > 1 be a real number. Consider the
following counting function

Sx =
1

2`

∑
p≤x

p6∈P(S)

(
1 +

(
a1

p

))
· · ·
(

1 +

(
a`

p

))
.

Since the Legendre symbol is completely multiplicative,

(
ai

p

)(
aj

p

)
=

(
aiaj

p

)
,

we see that

Sx =
1

2`

∑
p≤x

p 6∈P(S)

∑
0≤bi≤1

n=a
b1
1 ···a

b`
`

(
n

p

)
=

∑
0≤bi≤1

n=a
b1
1 ···a

b`
`

1

2`

∑
p≤x

p 6∈P(S)

(
n

p

)
.

Note that if n is a perfect square, then

(
n

p

)
= 1 for each p 6∈ P(S). Thus, for

these αS + βS values of n, the inner sum is

1

2`

∑
p≤x

p 6∈P(S)

(
n

p

)
=

1

2`
(π(x)− |P(S)|).

For the remaining values of n (i.e., when n is not a perfect square), we apply
Proposition 1 to get

1

2`

∑
p≤x

p 6∈P(S)

(
n

p

)
= o(π(x)) as x→∞.

Therefore,

Sx =
1

2`
(αS + βS)(π(x)− |P(S)|) + o(π(x))

and hence
Sx

π(x)
=
αS + βS

2`

(
1− |P(S)|

π(x)

)
+ o(1).
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Since |P(S)| is a finite number and it is elementary to see that as x → ∞,
π(x)→∞, we get

lim
x→∞

Sx

π(x)
=
αS + βS

2`
.

This completes the proof of Theorem 1. �

This can be applied to the quadratic non-residue case as well. Take

Sx =
1

2`

∑
p≤x

p 6∈P(S)

(
1−

(
a1

p

))
· · ·
(

1−
(
a`

p

))

and proceed as in the proof of Theorem 1. This yields Theorem 2.

Proof of Theorem 3. It is clear that K is a 2-elementary abelian extension of
Q, so Gal(K/Q) = (Z/2Z)t for some 1 ≤ t ≤ `. In fact, if

f(x) = (x2 − a1)(x
2 − a2) · · · (x2 − a`) ∈ Z[x],

then K/Q is the splitting field of f(x). Let

P :=

{
p > 2 :

(
a1

p

)
= · · · =

(
a`

p

)
= 1

}
.

By Theorem 1, we know that the density of P is

αS + βS

2`
=

1

2`−k
.

Now, we shall calculate the relative density of P using Chebotarev’s Density
Theorem.

Let p ∈ P . We need to calculate the Frobenius element σp ∈ Gal(K/Q). It is
enough to find the action of σp on

√
ai for each i. Since p ∈ P , ai is a quadratic

residue modulo p, by Proposition 2, we see that p splits completely in Q(
√
ai).

Therefore, the corresponding ei = fi = 1. Hence OQ(
√

ai)/pi = {0}. Therefore σp

restricted to Q(
√
ai) is the identity. In fact this is true for every i = 1, 2, · · · , `.

Therefore, the Frobenius element σp ∈ Gal(K/Q) satisfies

σp(
√
ai) =

√
ai for all i = 1, 2, . . . , `.

Since any element α ∈ K can written as α =
∑`

i=1 ci
√
ai, with ci ∈ Q,

σp(α) =
∑̀
i=1

ciσp(
√
ai) =

∑̀
i=1

ci
√
ai = α.

Thus, σp is identity for all p ∈ P . Hence, σp is uniquely defined in Gal(K/Q).
By the Chebotarev Density theorem, the relative density of P is

1

[K : Q]
=

1

2t
.

Thus, we get that t = `− k, which is what we wanted. �
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Example. Let p1, p2, p3, q1, q2, q3 be distinct primes. Let

S = {p1, p3, p1p2, p2p3, q1, q3, q1q2, q2q3}.
Observe that |S| = 8 and that βS = 0. We also see that

a1a2a3a4 = (p1p2p3)
2, a5a6a7a8 = (q1q2q3)

2, a1a2 · · · a8 = (p1p2p3q1q2q3)
2

are the only nonempty products of even length which are squares. Hence,

αS = 3 + 1 = 4 = 22.

Thus, the degree of K over Q is
αS

28
=

22

28
= 26.

Let us verify this using field theory. Let K1 = Q(
√
p1,
√
p3,
√
p1p2,

√
p2p3) and

K2 = Q(
√
q1,
√
q3,
√
q1q2,

√
q2q3). It is easy to see that K1 = Q(

√
p1,
√
p2,
√
p3)

and K2 = Q(
√
q1,
√
q2,
√
q3). Since there are no algebraic relations among the

pi’s and the qj’s, we see that

K = K1K2 = Q(
√
p1,
√
p2,
√
p3,
√
q1,
√
q2,
√
q3),

and K1 ∩K2 = Q. Hence, [K : Q] = 26.

Concluding Remarks. One could ask how hard or how easy it is to compute
αS and βS?

(1) If we use Lemma 1, then it is clear that the image of τ lies in the subspace
of W spanned by the prime numbers in P(S). Thus, we can think of the matrix
associated to τ as a matrix A of type ` × r with entries from {0, 1}, where
r = |P(S)|. Hence, computing αS and βS reduces to computing the kernel of A
modulo 2, which is an easy linear algebra problem. Thus, all is needed are the
factorizations of a1, . . . , a`, so computing the values of αS and βS fall in the class
of integer factorization problems.

(2) For a given real number x, we can easily compute the value of Sx (which
comes in the proof of Theorem 1) by computing the Legendre symbols. Hence,

we are able to compute the value
Sx

π(x)
also. For large value of x, this quotient

is an approximation to the density
αS + βS

2`
=

1

[K : Q]
. Therefore, the quotient

π(x)/Sx gives the approximation to the degree [K : Q]. However, the correct
value of x which gives the best approximation comes from Proposition 1, as we
use the estimate ∑

p≤x

(
n

p

)
= o(π(x)).

Let Nn > 1 be an integer (depending on n) such that for every x ≥ Nn, the above
estimate is true. Let

max{Nn : n = ab1
1 a

b2
2 · · · a

b`
` 6= �, bi ∈ {0, 1}, ai ∈ S} := N.
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If we know the explicit value of N , then we can choose an x > N and for this x,
we have π(x)/Sx is the best approximation to the degree [K : Q]. However, to
find the explicit value of N , we need to know, from the proof of Proposition 1,
the information on the least prime size in certain arithmetic progressions.
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