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Abstract. Let S = {a1, a2, · · · , a`} be a finite set of non-zero integers. In

this note, we give an exact formula for the degree of the multi-quadratic field

Q(
√

a1,
√

a2, . . . ,
√

a`) over Q. To do this, we compute the relative density of
the set of prime numbers p for which all the ai’s are simultaneously quadratic

residues modulo p in two ways.

1. Introduction

Let S = {a1, a2, . . . , a`} be a finite set of non-zero integers.

From basic field theory, it is well-known that the degree of the multi-quadratic
field

K = Q(
√
a1,
√
a2, . . . ,

√
a`)

over Q is 2t for some integer 0 ≤ t ≤ `, depending on the algebraic cancellations
among the

√
ai’s. The arithmetic of multi-quadratic number fields plays a crucial

role in the theory of elliptic curves. See for instance Hollinger [2] and Laska-Lorenz
[3].

When ai = pi, distinct prime numbers, then it is well-known that the degree
of [K : Q] = 2` = 2|S|; in our notation, t = ` = |S|. On the other hand, when
S = {2, 3, 6}, the degree of [K : Q] = 22 < 2|S|; thence t = 2 = |S| − 1.

In this paper, we provide a complete answer by computing the number t in terms
of the given inputs ai’s. Before we state the main theorem, we must first present
some notations.

Throughout the paper, we write p, q for prime numbers, x for a positive real
number, and π(x) for the number of primes p ≤ x. A set P of prime numbers is
said to have the relative density ε with 0 ≤ ε ≤ 1, if

ε = lim
x→∞

|P ∩ [1, x]|
π(x)

exits. Also, the following numbers count some special subsets of S.
(i) Let αS denote the number of subsets T of S, including the empty one, such

that |T | is even and
∏
s∈T

s = m2 for some integer m; hence, αS ≥ 1 for every

S.
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(ii) Let βS denote the number of subsets T of S such that |T | is odd and∏
s∈T

s = m2 for some integer m.

Now, we can state our main result of our note.

Theorem 1.1. For a given finite set S of non-zero integers with |S| = `, we have,

[K : Q] = 2`−k,

where k is the non-negative integer given by 2k = αS +βS . In other words, t = `−k.

2. Preliminaries

In 1968, M. Fried [1] answered that there are infinitely many primes p for which a
is a quadratic residue modulo p for every a ∈ S. Also, he provided a necessary and
sufficient condition for a to be a quadratic non-residue modulo p for every a ∈ S.
Similarly, in 1976, K. R. Matthews [4] found a necessary and sufficient condition
for a to be primitive root modulo p for every a ∈ S. More recently, S. Wright [5]
and [6] also studied this qualitative problem.

Here we consider the quantitative problem as follows. More precisely, we cal-
culate the relative density of those primes p such that a is a quadratic residue
(respectively, non-residue) modulo p for every a ∈ S. Let us start with the follow-
ing result.

Lemma 2.1. We have αS + βS = 2k for some integer k ≤ `.

Proof. Let V = (Z/2Z)` be the Z/2Z-vector space having a1, . . . ,a` as a basis. Let
W be the Z/2Z-vector space Q∗/(Q∗)2, where the addition modulo 2 is defined
as multiplication modulo squares. Let τ : V 7−→ W be given by τ(ai) = ai

(mod (Q∗)2) and extended by linearity. It is then clear that {i1, . . . , ij} ⊆ {1, . . . , `}
is such that ai1 · · · aij is a perfect square of an integer if and only if ai1 + · · ·+aij ∈
Ker(τ). It now follows immediately that αS + βS = 2k, where k is the dimension
of Ker(τ), and `− k is the dimension of the image of τ in W . �

For an integer a and odd prime p we write
(
a

p

)
for the Legendre symbol of a

with respect to p. The following result is well-known and we omit its proof.

Lemma 2.2. Let n be any integer which is not a perfect square. Then the estimate∑
p≤x

(
n

p

)
= o(π(x)),

holds as x→∞.
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Theorem 2.3. The relative density of the set of prime numbers p for which a is a
quadratic residue modulo p for every a ∈ S is

αS + βS

2`
.

Proof. Let P(S) be the set of all distinct prime factors of a1a2 · · · a`. Clearly, |P(S)|
is finite. Let x > 1 be a real number. Consider the following counting function

Sx =
1
2`

∑
p≤x

p 6∈P(S)

(
1 +

(
a1

p

))
· · ·
(

1 +
(
a`

p

))
.

Since the Legendre symbol is completely multiplicative,
(
ai

p

)(
aj

p

)
=
(
aiaj

p

)
,

we see that

Sx =
1
2`

∑
p≤x

p 6∈P(S)

∑
0≤bi≤1

n=a
b1
1 ···a

b`
`

(
n

p

)
=

∑
0≤bi≤1

n=a
b1
1 ···a

b`
`

1
2`

∑
p≤x

p 6∈P(S)

(
n

p

)
.

Note that if n is a perfect square, then
(
n

p

)
= 1 for each p 6∈ P(S). Thus, for these

αS + βS values of n, the inner sum is

1
2`

∑
p≤x

p 6∈P(S)

(
n

p

)
=

1
2`

(π(x)− |P(S)|).

For the remaining values of n (i.e., when n is not a perfect square), we apply Lemma
2.2 to get

1
2`

∑
p≤x

p 6∈P(S)

(
n

p

)
= o(π(x)) as x→∞.

Therefore,

Sx =
1
2`

(αS + βS)(π(x)− |P(S)|) + o(π(x))

and hence
Sx

π(x)
=
αS + βS

2`

(
1− |P(S)|

π(x)

)
+ o(1).

Since |P(S)| is a finite number and it is elementary to see that as x→∞, π(x)→∞,
we get

lim
x→∞

Sx

π(x)
=
αS + βS

2`
.

This completes the proof of Theorem 2.3. �

This can be applied to the quadratic non-residue case as well. Take

Sx =
1
2`

∑
p≤x

p 6∈P(S)

(
1−

(
a1

p

))
· · ·
(

1−
(
a`

p

))

and proceed as in the proof of Theorem 2.3. This yields the following result:
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Theorem 2.4. We have, βS = 0 if and only if the density of the set of primes p
for which a is a quadratic non-residue modulo p for every a ∈ S is

αS

2`
.

3. Proof of Theorem 1.1.

First, we shall recall Chebotarev’s Density theorem as follows.

Chebotarev’s Density Theorem. Let K/Q be a Galois extension with Galois
group G. For each prime p, let σp ∈ G denote its Frobenius and let C be any
conjugacy class of G. Then the relative density of the set of primes P = {p : σp ∈

C} is
|C|

[K : Q]
.

Proof of Theorem 1.1. It is clear that K is a 2-elementary abelian extension of Q,
so Gal(K/Q) = (Z/2Z)t for some 1 ≤ t ≤ `. In fact, if

f(x) = (x2 − a1)(x2 − a2) · · · (x2 − a`) ∈ Z[x],

then K/Q is the splitting field of f(x). Let

P :=
{
p > 2 :

(
a1

p

)
= · · · =

(
a`

p

)
= 1
}
.

By Theorem 2.3, we know that the density of P is
αS + βS

2`
=

1
2`−k

.

Now, we shall calculate the relative density of P using Chebotarev’s Density The-
orem.

Let p ∈ P . We need to calculate the Frobenius element σp ∈ Gal(K/Q). It is
enough to find the action of σp on

√
ai for each i. Since p ∈ P , ai is a quadratic

residue modulo p and hence p splits completely in Q(
√
ai). Therefore σp restricted

to Q(
√
ai) is the identity. In fact this is true for every i = 1, 2, · · · , `. Therefore,

the Frobenius element σp ∈ Gal(K/Q) satisfies

σp(
√
ai) =

√
ai for all i = 1, 2, . . . , `.

Hence, σp is uniquely defined in Gal(K/Q). By the Chebotarev Density theorem,
the relative density of P is

1
[K : Q]

=
1
2t
.

Thus, we get that t = `− k, which is what we wanted. �

Example. Let p1, p2, p3, q1, q2, q3 be distinct primes. Let

S = {p1, p3, p1p2, p2p3, q1, q3, q1q2, q2q3}.
Observe that |S| = 8 and that βS = 0. We also see that

a1a2a3a4 = (p1p2p3)2, a5a6a7a8 = (q1q2q3)2, a1a2 · · · a8 = (p1p2p3q1q2q3)2

are the only nonempty products of even length which are squares. Hence,

αS = 3 + 1 = 4 = 22.
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Thus, the degree of K over Q is
αS

28
=

22

28
= 26.

Let us verify this using field theory. Let K1 = Q(
√
p1,
√
p3,
√
p1p2,

√
p2p3) and

K2 = Q(
√
q1,
√
q3,
√
q1q2,

√
q2q3). It is easy to see that K1 = Q(

√
p1,
√
p2,
√
p3)

and K2 = Q(
√
q1,
√
q2,
√
q3). Since there are no algebraic relations among the pi’s

and the qj ’s, we see that

K = K1K2 = Q(
√
p1,
√
p2,
√
p3,
√
q1,
√
q2,
√
q3),

and K1 ∩K2 = Q. Hence, [K : Q] = 26.

Concluding Remarks. One could ask how hard or how easy it is to compute αS

and βS?
(1) If we use Lemma 2.1, then it is clear that the image of τ lies in the subspace

of W spanned by the prime numbers in P(S). Thus, we can think of the matrix
associated to τ as a matrix A of type `×r with entries from {0, 1}, where r = |P(S)|.
Hence, computing αS and βS reduces to computing the kernel of A modulo 2,
which is an easy linear algebra problem. Thus, all is needed are the factorizations
of a1, . . . , a`, so computing the values of αS and βS fall in the class of integer
factorization problems.

(2) For a given real number x, we can easily compute the value of Sx (which
comes in the proof of Theorem 2.3) by computing the Legendre symbols. Hence,

we are able to compute the value
Sx

π(x)
also. For large value of x, this quotient is an

approximation to the density
αS + βS

2`
=

1
[K : Q]

. Therefore, the quotient π(x)/Sx

gives the approximation to the degree [K : Q]. However, the correct value of x
which gives the best approximation comes from Lemma 2.2, as we use the estimate∑

p≤x

(
n

p

)
= o(π(x)).

Let Nn > 1 be an integer (depending on n) such that for every x ≥ Nn, the above
estimate is true. Let

max{Nn : n = ab1
1 a

b2
2 · · · a

b`

` 6= �, bi ∈ {0, 1}, ai ∈ S} := N.

If we know the explicit value of N , then we can choose an x > N and for this x, we
have π(x)/Sx is the best approximation to the degree [K : Q]. However, to find the
explicit value of N , we need to know, from the proof of Lemma 2.2, the information
on the least prime size in certain arithmetic progressions.
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