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Interplay Between Four Conjectures
on Certain Zero-Sum Problems

R. Thangadurai

The Institute of Mathematical Sciences, C.I.T. Campus, Taramani, Chennai 600113, India

Abstract. In this paper, we explore the interplay of four different conjectures on certain
zero-sum problems in Z, ® Z,. This study of the inter-relations between these conjectures
leads to the conclusion that determining the structure of minimal zero sequences (see
below for the precise definition) is crucial. Also, we study the analogous situation in Zy,.

1. INTRODUCTION AND NOTATIONS

Additive number theory, factorization theory and graph theory provide a good source
for combinatorial problems in finite abelian groups (for instance, see [17], [18], [7],
[19] and [2]). Among them, zero sum problems have been of growing interest. The
cornerstone of almost all recent combinatorial research on zero-sum problems is a
40-years old theorem of Erd6s-Ginzburg-Ziv and a question of H. Davenport on an
invariant of finite abelian groups.

Let G be a finite abelian group. We denote the cyclic group with n elements by Z,.
Then G = Z,, ® -+ & Z,,, with n; > 1 and n; dividing n;y; for 1 < i < r, where
n, = exp(G) is the exponent of G (exponent of G is the least common multiple of
the orders of all the elements of G) and r is the rank of G. Most of our discussion
will be centered around the group G = Z,, ® Z,. Clearly, in this case, exp(G) = n
and r(G) = 2. We denote an arbitrary prime number by p and an arbitrary natural
number by n.

In general, our notations and terminology will be the same as the one in factorial
theory (cf. survey articles by Chapman, Halter-Koch and Geroldinger in [2] and the
paper of Gao and Geroldinger [14]). Let F(G) denote the free abelian monoid with
basis G. The elements of F(G) will be called sequences. The monoid homomorphism

¢ ¢
0:F(G) —GbyoS=[[g)=Y 9
v=l v=1

maps a sequence to the sum of its elements. Let S = [I*_, g, € F(G) be a sequence.
Then S has a unique representation of the form

s=[I 9~ e F(G),

9€G
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where v,(5) is the number of times g appears in S and |S| = Y eqvy(S) =£ € N
is called the length of S. We say that T' € F(Q) is a subsequence of S and we write
TS, if vy(T) < vy(S) for every g € G. As usual, we say that T,T" € F(G) are
disjoint subsequences of .S if their product T7” is a subsequence of S. The identity
element 1 € F(G) will be called the empty sequence, and we have |1| = 0. Whenever
T|S, by the element R = ST~! € F(G) we mean the sequence with T deleted from
S. Clearly, RT = S. We say that the sequence S is

a zero sequence, if 0(S) = X¢_, gx = 0,

a zero-free sequence, if S does not have any zero subsequences,

a minimal zero sequence, if it is a zero sequence and each proper subsequence is
zero-free,

a short zero sequence, if it is a zero sequence with 1 < [S]| < exp(G).

In factorization theory, the set of all zero-sequences is a submonoid of F(G). Its
irreducible elements are the minimal zero sequences. For further reading, one may
refer to [5], [2] and [6]. :

We denote 77(G) the least positive integer such that whenever S € F(G) with |S| >
n(G) is given, then there exists a short zero subsequence T of S. Also, with these
notations, the Davenport constant D(G) is defined to be the maximum length of
the minimal zero sequence in G. It is easy to see that D(Z,) = n(Z,) = n.

2. FOurR CONJECTURES AND THEIR INTERPLAY

2.1 Congectures and Their Status

In 1969, Olson [21] proved that D(Z§) = d(p—1)+1 where 22 :=Z, ® Z, & - - - Z,,.
———

d times

Using this, he proved the following theorem.
Theorem 2.1.1 (Olson, 1969, [21)) 7(Z, ® Z,) = 3p — 2.

This theorem was extended to every natural number by van Emde Boas [28], who
made the following conjecture.

Conjecture 1. (van Emde Boas, 1969, [28]) Let S € F(Z, ® Z,) with |S| = 3n - 3.
If S does not contain any short zero subsequences, then S = a™® 16" 1c""1, where
a,b,c € Z, ® Z, are distinct elements.

van Emde Boas [28] verified Conjecture 1 for primes p = 2, 3, 5, 7 using a computer.
Recently, W. D. Gao [11] proved that if Conjecture 1 is true forn =k andn=m
then it is true for n = km. Thus, it follows that if Conjecture 1 is true for all primes,
then it is true for all natural numbers 7.
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By Theorem 2.1.1, we know that there exists a short zero subsequence. In 1973,
Harborth [15] considered the existence problem of a zero subsequence of prescribed
length p. More precisely, f(p) is the least positive integer such that, given any
arbitrary element S € F(Z, ® Z,), with |S| > f(p), S contains a zero subsequence
of length p. He proved that f(2) =5 and f(3) = 9. Later, Kemnitz [16] proved that
f(5) =17 and f(7) = 25. Also, he conjectured the following.

Conjecture 2. (Kemnitz, 1983, [16]) For every prime p, we have f(p) = 4p — 3.

This conjecture was first made by Kemnitz and was suggested, independently, by
N. Zimmerman and Y. Peres. It is trivial to see that if the conjecture holds for two
integers m and n, it is also true for mn. So, if one proves it for all primes, then it
holds for all natural numbers.

In 1996, W. D. Gao (9] proved that if S € F(Z, & Z,) with |S| = 4n — 3 and
T = o™ ! as its subsequence for some a € Z, @ Z,, then S satisfies Conjecture 2.
Moreover, he proved that if f(n) = 4n—3 and n > ((3m—4)(m—1)m?+3)/4m with
m > 2, then f(nm) = 4nm — 3. These results were improved upon by the author in
[26] where it has, in fact, been proved that if S € F(Z, ®Z,) with S| = 4n— 3 and
T = o’ as its subsequence with s > | %], then S satisfies Conjecture 2 and that if
f(n) =4n — 3 and n > (2m® — 3m? + 3)/4m, with m > 2, then f(nm) = 4nm - 3.
In another direction, in 1995, Alon and Dubiner [1] gave the upper bound f(n) <
6n — 5 for all n € N. Later, this was improved to f(p) < 5p — 1 for all prime p by
W. D. Gao [10]. In 2000, L. Rényai [20] proved that f(p) < 4p — 2 for all primes
p. From this bound, he concluded that f(n) < (41/10)n. Recently, W. D. Gao [12]
proved that f(pF) < 4p* — 2 for all primes p and ¥ > 1.

Clearly, f(n) > 4n — 3, as the example S = (0,0)"1(0,1)*%(1,0)*%(1,1)* ! in
F(Z, ® Z,) shows. W. D. Gao,[11] conjectured the following.

Conjecture 3 (W. D. Gao, 2000, [11]) If S € F(Z,8Z,) with |S| = 4p—4 is such that
S does not contain any zero subsequences of length p, then S = aP~1pP~1cP~1gP 1,
where a,b,c,d € Z, ® Z, are all distinct elements.

In the same paper, Gao proved that if Conjecture 3 is true for all primes, then it
is true for all natural numbers. He also verified this conjecture for p = 2,3 and 5.
Recently, it has been proved in [25] that Conjecture 3 is true for p = 7.

In 1998, Gao and Geroldinger [14] studied the structure of long minimal zero se-
quences in G. There they conjectured the following.

Co.njecture 4. (Gao and Geroldinger, 1998, [14]) If S € F(Z,®Z,) with |S| = 2p—1
is @ minimal zero sequence, then there exists a subsequence T = aP~! of S for some
a€Z,dZ,
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They verified Conjecture 4 for primes p =2, 3,5 and 7.

2.2 Inter-Relationships
In this subsection, we shall explore the inter-relations between these four conjectures.

Theorem 2.2.1 (W. D. Gao, 2000, [11]) Conjecture § implies Conjecture 2.

Proof. Suppose not. Let S € F(Z, @ Z,) with |S| = 4n ~ 3, which admits no zero
subsequence of length n. Then no subsequence can admit a zero sum of length n.
Fix z € S and T = Sz~!. Then by Conjecture 3, T is of the form a®~1p*~1¢"—1dr-1,
Let Ty = Sa™! = za™ 26" ¢ 1d"1. Once again by Conjecture 3, z = a. Then a”
is a subsequence of S of length n having zero sum. This contradiction proves the
Theorem. O

Theorem 2.2.2 Conjecture 8 implies Conjecture 1.

Proof. Let S € F(Z, ® Z,) with |S| = 3n — 3 such that S does not have any short
zero subsequences. Therefore, every element appearing in S is non-zero in Z,, ® Z.,.

Consider S; := (0,0)""'S € F(Z, ® Z,) with |S;| = 4n — 4. Note that S cannot
have a zero subsequence of length n. Hence S does not have a zero subsequence of
length n. By Conjecture 3, S; = (0,0)" 'a*16"~1¢*~1, where a,b,c € Z, ® Z, are
distinct elements. That is, Conjecture 1 is true. a

Remark. Assume Conjecture 1. If § = o™~ [I¥"3b; € F(Z,0Z,) with |S] = 4n—4
such that S doesn’t have any zero subsequences of length n. Let §; = S — a be the
translation of S by a. Then 5; does not have a zero subsequence of length n. Hence by
Conjecture 1, S; = (0,0)" "6~ 1c}~*dP~1. Therefore S = a7~ 1dn-1, where
b=0b; +a,c=c +aand d = d; + a. We improve this observation further in the
following theorem.

Theorem 2.2.3 Assume Conjecture 1. Let § = a°[];a; € F(Z, ® Z,) with s >
[“‘3] and |S| = 4n — 4. Suppose S does not contain a zero subsequence of length n.
Then S is of the form a™ 10" 1c"~1d"! for some a,b,c,d € Z, ® Z,.

Proof. Let S = o*[[;%**a; € F(Zn @ Z,) with |S| = 4n — 4 and s > [252].
Translate the given 4n — 4 elements by a. We get S — a = (0,0)° [I%7*~* b;, where
b =a;~a#(0,0) € Z, ®Z,. Let $* =20,

In order to prove this theorem, we shall prove that when s = n — 1, the sequence
S—a will be of the form (0, 0)"~*z"~1y"~1:7~1 € F(Z,®Z,), where 1,y, 2 € Z,®Z,
are distinct elements. When s < n — 1, we produce a zero subsequence of S — a of
length n so that we get a contradiction and hence the case s < n—1 cannot happen.
Case (i) (s=n—-1)

This is same as the above remark.
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Case (ii) ([%53] <s<n-2)
In - this case, |S*| = 4n — 4 — s > 3n — 2. Therefore, S* contains a short zero
subsequence T, by Theorem 2.1.1 In fact, |T'| < n — s. That is,

IT|+s<n—1. | (1)

Otherwise, T together with n — |T'| zeros will produce a zero subsequence of length
n, which is a contradiction of the assumption.

Since |S*| > 3n — 2, while choosing the above T, we may choose maximal T with
respect to its length. In case if we have many maximal short zero sequences, we
choose one among them and fix as T. Now, the deleted sequence S*T! has length
4n—4—(s+1) > 3n— 3. Since there is no subsequence R = "~ of S*T'! for every
a € Z,, ®Z,, by Conjecture 1, there exists a short zero subsequence D of S*T! (in
fact, if |S*T~1| > 3n — 2, we can use Theorem 2.1.1). Because of maximality of |T|,
we have

|DI < [T (2)

Also, if [T| + |D| < n, then T'D is a short zero subsequence of S* with [T'| < |T'D|,
contradicting to the choice of T. Thus

n+1<|T|+|D|. (3)

Now, multiplying the equation (1) by 2, we get 2s < 2n — 2 — 2|T'|. If we add the
equations (2) and (3), we get, 2|T'| > n+ 1. Combaining these two informations, we
get 25 < 2n — 2 — 2|T| < n — 3, which is a contradiction. Hence the theorem. O

Theorem 2.2.4 (Gao and Geroldniger, 1998, [14]) Conjecture 4 implies Conjecture
1 for all primes.

Corollary 2.2.5 Assume Conjecture 4. Let S € F(Z, ® Z,) with |S] = 4p— 4
such that S does not have a zero subsequence of length p. Also assume that S has a
minimal zero subsequence of length 2p — 1. Then S is of the form a?~1pP~1cP~1dp~1
for some a,b,c,d € Z, ® Z,,.

Proof. Let S € F(Z, ® Z,) with |S| = 4p — 4 such that S doesn’t have a zero
sequence of length p. Also we have by assumption S has a minimal zero subsequence
of length 2p — 1. By Conjecture 4, we have S = a?~! H,a”fa a; € F(Z, ® Z,). Since
by Theorem 2.2.4, Conjecture 1 is true and v,(S) = p—1, by Theorem 2.2.3, we get
the required structure of the sequence S. |

Theorem 2.2.6 Assume Conjecture 2. Let S € F(Z, ® Z,) with |S| = 4p — 4.
Suppose S does not have a zero-sum of length p. Then S does have a zero-sum of
length p — 1 and a zero-sum of length 3p — 3.
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Proof. Let the sequences S; and S; be such that S; := S(0,0) and S := Sz4p-3,
where Z4,-3 = — 71 z;. Since |Sy| = |Sy| = 4p — 3, by the Conjecture 2, S1, S
have zero subsequences, say 17 and T, of length p, respectively. Clearly, by the
assumption, neither 73 nor 75 can be subsequence of S. Therefore (0,0) is in T} and
T4p-3 is in T5. Hence there exist a common subsequences I of 77 and S and J of
T, and S of length p — 1 such that ¥ ;z = (0,0) and 372 = —4p-3 = it
Then taking Jy after omitting J from zy,- -, Z4—4 will produce a zero sequence
with |Jo| =3p— 3. o

Remark. The sequence S = (1,0)P~1(0,1)?~(1,1)*~! € F(Z, ® Z,) has no short
zero subsequence in it. But S has minimal zero subsequence of length ¢ for every ¢
in the range p+1 <t < 2p — 1. For, T; = (1,1){(0,1)P~%(1,0)?~* is a minimal zero
subsequence of S with |T;| = 2p—i for all ¢ in the range 1 < i <p—1.

We shall prove the above remark in generality as follows.

Theorem 2.2.7 Let S = aP~ 107~ 1¢?~! be a sequence in F(Z,®Z,) with |S| = 3p-3.
Assume that S does not have any short zero subsequences in it. Then, S has minimal
zero subsequence T of length r for everyp+1<r<2p-1.

To prove the above theorem, we first prove a sequence of lemmas as follows.

Lemma 2.2.8 Let S =[];z; € F(Z, ® Z,) be a sequence of length 3p — 3. Assume
that S does not have any short zero subsequences. Then, S does not have any zero
subsequence of length at least 2p.

Proof. First we shall prove that S does not have any zero subsequence of length at
least 2p + 1. Suppose not. That is, there exists a zero subsequence T' = [[;cx z; €
F(Z, & Zy) of S of length £ > 2p + 1 where K is a subset of {1,2,---,3p — 3} and
|K| = £. Consider the 3p elements y;;1 < ¢ < 3p where

) T ifie K
%= (0,0), otherwise

It is clear that Y27, 4 = Yiex & = (0,0). We invoke a theorem of Alon and Du-
biner [1] which says that if a sequence ay, ag, - - -, as, where a; € Z, @ Z, such that
% a; = (0,0), then there exists a zero subsequence of length p in the given se-
quence. Therefore, there is a zero subsequence 7" with |7”| = p and the index set
I of T is a subset of {1,2,---,3p}. As £ > 2p+ 1, we have 3p — £ < p — 1. Then,
J = IN K has cardinality between 1 and p. Thus Yics ¥ = Lics Zi = (0,0) which
contradicts the hypothesis. Hence there is no zero subsequence of length at least
2p+1.
Now we assume that there is a zero subsequence T" of S of length 2p. Since the
Davenport constant D(Z,® Z,) = 2p— 1, it is clear that T" has a zero subsequence,
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say T". This means, the length of 7" or the length of the complement subsequence
T" of T" is less than or equal to p which contradicts the hypothesis. Thus S does
not have any zero subsequence of length at least 2p. Hence the lemma. 0

Lemma 2.2.9 Let S = (1,0)*1(0,1)*" (e, f)P~! in F(Z, ® Z,) be a sequence of
length 3p—3. Assume that S does not have any short zero subsequences in it. Then, S
has minimal zero subsequence T of length r for every r in the range p+1 < r < 2p—1.
Proof. Given that S = (1,0)P~(0,1)* (e, f)~! in F(Z, ® Z,) with |S| =3p -3
such that S does not have any short zero subsequences in it. We shall produce

minimal zero subsequence T of S of length r for every r in the range p+1 < r <
2p-1.

First note that any zero subsequence T' = (1,0)%(0, 1)(e, f)™ of S of length r will be
k(1,0)4£(0,1)+m(e, f) = (0,0) in Z, ® Z, for some k,¢,m € Z, and k+£+m = 7.
Thus, we get the following equations over Z, as follows;

k+me=20
£+mf=0
k+f+m=r (4)

Therefore if we treat k,£,m are unknown variables, then to prove the theorem it is
enough to prove that for every p+1 < r < 2p — 1, there is a simultaneous solution
for the system of equations (4) over Z,. This system of equations has solution over
Z, if and only if the determinant of the following matrix

1 0 e
01 f
111

is non-zero over Z,. So, whenever the determinant of this matrix is non-zero, for any
given r modulo p, there exists k,£ and m such that £(1,0) + £(0,1) + m(e, f) = 0
in Z, ® Z, with k + £+ m = r. Clearly, by the assumption that S does not have
any short zero subsequence, r cannot be less than or equal to p. Therefore, 7 is
either p + 7' or 2p + v’ where 1 </ < p — 1. Lemma 2.2.8 assures that r # 2p 4+ r'.
Therefore, r = p+7r' where 1 <r' <p-1.

Now, to end the proof of the lemma, it is enough to check the case when the
determinant of the matrix vanishes modulo p. The determinant of this matrix is
zero if and only if e+ f = 1 (mod p). But if we consider the sequence S* =
(1,0)71(0,1)P" (e, 1 — )*~! in F(Z, ® Z,), then we see that the subsequence

T = (1,0)P75(0,1)* (e, 1 — ¢)

of S* is a zero subsequence of length p. Since, by assumption, S does not have short
zero subsequence, this case never arises. O
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Proof of Theorem 2.2.7 Given that S = a?~'0?~1¢?~! is a sequence in F(Z, D Z,)
with |S| = 3p — 3 such that S doesn’t have any short zero subsequences in it. It
is clear that any two elements among a, b, ¢ € Z, & Z, is linearly independent over
Z,. That is, there does not exist A, 4,y € Z, such that either a = Ab or b = pc
or ¢ = ya. If not, then we can produce a short zero subsequence in S which would
contradict to the assumption. Without loss of generality, we can assume that e and
b constiute a basis for Z, ® Z, over Z,,. Therefore ¢ = Aa + pb for some A,y € Z,,.

To end the proof of Theorem 2.2.7, we shall prove that it is enough to assume
a = (1,0) and b = (0,1). Then by Lemma 2.2.9, the proof of the theorem follows
immediately.

Claim. If the sequence S* = (1,0)P~1(0,1)P~*(), u)?~! has a zero subsequence of
length r, then the sequence S also has a zero subsequence of length 7.

For, if S* has a zero subsequence of length r, then there exist integers 0 < k,4,m <
p — 1 such that k + ¢+ m = r and k(1,0) + £(0,1) + m(A, p) = (0,0) in Z, & Z,.
That is,

k+mA=0and {+mp=0 (5)

in Z,. Consider the following subsequence T” of S where T" = a*bc™, where a =
(a1,@2),b = (b1,b2),¢ = (c1,2) € ZpDZ,. Since ¢ = Aa+ub = (Aag + by, Aag+pubs),
we get ¢; = Aay + pby and ¢ = Aay + pby. With these in hand, we see that

ka+mb+ Lc k(ay, az) + m(by, bs) + £(c1, c2)
(kay + &by + mcey, kay + €by + mcp)
((k + mA)ay + (€ + mp)by, (k + mA)az + (£ + mu)bs)

(0,0)

i

(using the equation (5)) in Z, ® Z,.

Now, it is clear from the above claim that 5* does not have any short zero subse-
quence in it. Therefore by Lemma 2.2.8, S* contains a minimal zero subsequence
T* of length r for every p+ 1 < r < 2p — 1. Once again appealing to the above
observation, we conclude that S does have minimal zero subsequence of length r for
every p+1 < r < 2p—1 (the minimality follows because S does not have any short
zero subsequences). Hence the theroem. O

Corollary 2.2.10. Assume Conjecture 1. Let S € F(Z, ® Z,) be a sequence of
length 3p—3. Also, assume that S does not have any short zero subsequences. Then S
has minimal zero subsequence T of length r for every r in the range p+1 < r < 2p—1.

Proof. Since, by assumption, Conjecture 1 is true, S is of the form as in Theorem
2.2.7. Hence the conclusion of Theorem 2.2.7 holds. m]
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Corollary 2.2.11. Assume Congjecture 1. Let S € F(Z, & Z,) be a sequence of
length 3p — 3. Also, assume that S does not have any short zero subsequences. Then
any minimal zero subsequence of S of length 2p — 1 has an element a € Z, ® Z,
which is repeated at least (2p — 1)/3 times.

3. ANALOGOUS PROBLEMS IN Z,

Since D(Z,) = 1(Z,) = n, the analogue to Conjecture 1 will be: If S € F(Z,) with
|S| =n—1and S is zero-free, then S = a™! for some a € Z,. Indeed, this is known
in great generality as follows.

Theorem 3.1 (Bovey, Erdés and Niven, 1975, [4]) Let n,k € N with n — 2k > 1.
Let S = [1;a; € F(Z,) be a zero-free sequence with |S| = n — k. Then there exists
a € Z, such that v,(S) > n—2k+1.

Corollary 3.2 Let k be an integer such that 1 < k < (n+2)/4. Let S = [J;a; €
F(Z,) with |S| = n— k be a zero-free element. Then S is of the following form:

k—1—f
S =g+ I b where b =e;a, 0<£<k—1,
=1
and2<e;<e <+ <epjpwithe,+es+-+ep14<2k—1-¢
Proof. By Theorem 3.1, there is an element a € Z,, which is repeated in S at least
n—2k+1 times. Since 1 < k < (n+2)/4, it is clear that v,(S) > n/2+1. Therefore,
the order of @ in Z,, is n. Then any element b € Z, is b =ea with 1 <e<n-—1.
If ,(S) =n—2k+ 1+ £ < n—k, then there exist by, bo, -+, bx_;_¢ not necessarily
distinct, but not equal to a in Z, such that v,,(S) > 0. Clearly, since S is zero-free
and b; = e;a, we have e; +eg + -+ ep_1¢ <2k —-1-—4. O

Corollary 3.3 Let S € F(Z,) be a zero-free element of length n — 1. Then there
ezists a € Z,, such that v,(S) =n—1.

Proof. Put k£ = 1 in Theorem 3.1, to get the result. |

Corollary 3.4 Let S € F(Z,) be a zero-free element of length n—2. Then S consists
of either only one element a such that v,(S) = n— 2 or two distinct elements a and
b such that v,(S) = n — 3 and b = 2a with v2,(S) = 1.

Proof. Put k£ = 2 in Theorem 3.1, we get S contains an element a which is repeated
at least n — 3 times. If v,(S) = n — 2, then there is nothing to prove. If not, then
v4(S) = n — 3. Therefore the cyclic subgroup generated by a in Z, is the whole
group, since S is zero-free. In other words, the order of a is n. Since |S|=n -2, S
has to have another element b € Z, such that v,(S) = 1. Clearly b = af for some
2< €< n—1. As b is different from g, it is clear that £ # 1. If £ > 2, then we have
a zero subsequence b, a,a,- -, a of S, which is impossible. Therefore £ = 2. a

[

n—2£ times
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The following theorem is a generalisation of the analogue of Conjecture 4 in Z,.

Theorem 3.5 Let n,k € N with n — 2k > 1. Let S =[1;a; € F(Z,) be a minimal
zero sequence with |S| =n —k + 1. Then

(i) whenever 1 < k < (n+2)/3, there ezists a € Z,, such that v,(S) > n—2k+2.

" (i3) whenever (n+2)/3 < k < (n—1)/2, there ezists a € Z,, such that v,(S) >
n—2k+1. '

In particular, in both the cases, we have v(S) > n -2k + 1.

Proof. Let S be a minimal zero sequence with |S| = n —k+ 1. Let a € Z, be
appearing in § a maximum number of times. Since S is a minimal zero sequence,
the subsequence R = Sa~! is zero-free and |R| = n — k. Therefore by Theorem 3.1,
there exists an element b € Z,, such that v,(R) > n — 2k + 1.

(i) Let 1 < k < (n+ 2)/3. Suppose b # a. Since v4(S) > w(R) > n—2k +1,
|S] > 2n—4k+2. Since |S| = n—k, it is clear that 2n—4k+2 < n—k, which implies
k > (n+ 2)/3. But this not true. Therefore a = b and hence v,(S) > n — 2k + 2.

(ii) Let (n+2)/3 < k < (n — 1)/2. In this case, b can be different from a and
also, v,(S) > v(S) > n — 2k + 1. Therefore, v,(S) > n — 2k + 1. o

Corollary 3.6 Let S = [J;a; € F (Zn) be a minimal zero sequence with |S| = n.
Then S = a® for some a € Z,, with order n.

Proof. Put k£ =1 in Theorem 3.5 to get S = a" for some a € Z,. O

Corollary 3.7 Let S = [1; a; € F(Z,) be a minimal zero sequence with |S| =n—1.
Then S = a™?b for some a € Z,, whose order is n, and b = 2a.

Proof. Put k = 2 in Theorem 3.5. We get that there is an element a € Z, which
is repeated at least n — 2 times. The sequence S cannot be of the form S = a™~%,
since it is not even a zero sequence. Therefore, S = a”‘2b where b # a € Z,,. Since

S is a zero sequence, it is clear that b = 2a. O

Corollary 3.8 Let k be an integer such that 1 < k < (n+2)/4. Let S =[];a; €
F(Z,) with |S| =n—k+1 be a minimal zero sequence. Then S is of the following

form:
k—1-¢

S = ca™ %+ T b; where b; =e€a, 0<€<k~1,
i=1

and 2 < e; < ey < o K epyg withey +eg+ -+ ep1¢g <2k—1-—1 and
c= -—ha+2k 1“eb

Proof. Let S be a given minimal zero sequence with |S| =n—k+ 1. Let c € Z,
such that v,(S) > 0. Let R = ¢™'S be a subsequence of length n — k. Since S is
minimal zero sequence, R is a zero-free subsequence of length n — k. Therefore by
Corollary 3.2, the result follows. |
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We move on to a 40 year old classical theorem, known as the EGZ theorem, which
is analogous to Conjecture 2 in Z,, and is stated as follows.

Theorem 3.9 (Erdés, Ginzburg and Ziv, 1961, [8]) If S € F(Z,) with |S| = 2n—1,
then there ezists a zero subsequence T of S with |T| = n.

It is easy to see that if § = 0°!1°! € F(Z,), then there doesn’t exist a zero
subsequence of length n in S.

Recently, the author [27] proved the following theorem, which is a generalization
analogue of Conjecture 3 in Z,.

Theorem 3.10 Let n,k be positive integers such that n — 2k > 1. Let S € F(Zy,)
with |S| = 2n—k — 1. Suppose S does not have a zero subsequence of length n. Then
there ezist a # b € Zy, such that vs(S) > vy(S) > n— 2k + 1.

Corollary 3.11 If § € F(Z,) with |S| = 2n — 2 is such that S does not contain
any zero subsequence of length n, then S = a™ 14", where a # b € Z,,.

Proof. Put £k =1 in Theorem 3.10 to get the result. : O

Remark. The result in Corollary 3.11 is analogous to Conjecture 3. This was
proved by Peterson and Yuster [23] and Bialostocki and Dierker [3].

It has been observed in [27] that Theorem 3.10 can be easily deduced from Theorem
3.1, and conversely, Theorem 3.1 also can be proved as a consequence of Theorem
3.10.

We shall give a different proof of Theorem 3.9, starting from Corollary 3.11 as
follows.

Alternative proof of Theorem 3.9. Let S € F(Z,) with |S| = 2n — 1. Suppose
T = a71S is a subsequence of S with |T| = 2n — 2 such that T does not have any
zero subsequences of length n. By Corollary 3.11, we know, T = z*~1y"! € F(Z,).
Now, consider 7) = z~1S. Clearly, |T1| = 2n — 2. If 7} has a zero subsequence of
length 7, then there is nothing to prove. If not, again by Corollary 3.11, we get
¢ =z or a = y. In any case, we have an element of Z, which is repeated n times.
Thus Theorem 3.9 is true. a

Theorem 3.12. Let k be an integer such that 1 < k < n/4. Then Theorem 3.1
implies and is implied by Theorem 3.5
Proof. Theorem 3.1 == Theorem 3.5 is clear from the proof of Theorem 3.5. Now
we shall prove the converse implication.

Let S =[l;a; € F(Z,) with |S| =n — k and S be a zero-free element of F(Z,,).
Let a = Y75 a; # 0 in Z,, by assumption. Consider S; = (—a)S € F(Z,). Clearly
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|S1] = n —k + 1 and S; is a minimal zero sequence, as S is zero-free. Therefore,
there is an element b € Z, such that v,(S1) > n -2k + 1. If b # —a, then we
are done. Suppose b = —a and —a is repeated exactly n — 2k times in S. Let us
rename the indices of the elements a;’s and assume that a;, ag, - -+, a; are different
from b. Then none of the q; is equal to any of the elements from the subset A C Z,,
where A := {a,2a,---,(n — 2k)a}. This is because if a; = £a for some £ € A, then
a;+b+b+---+b=0€ Z, which is a contradiction. Also note that 2n — 4k > n,

we COIlCll:dt:imﬁlat a; =bl; for alli = 1,2,..-, k and since a; # a, £; > 2 for every i.
Hence Y5, £; > 2k. Therefore, we can find (by renaming the indices) £;, 8, -, 4,
where 1 < 7 < k such that 2k < Y[, 4 < n. Writting 30, 4 = 2k + m with
0 < m < n — 2k, then we have the following zero subsequence T = d™ [];_, a; of S
which is a contradiction. Therefore v,(S) > n — 2k + 1. Thus Theorem 3.1 is true.
()

Remark. (i) If 1 < k < n/4, then we have the following implications:
Theorem 3.5 <= Theorem 3.1 <= Theorem 3.10 = Theorem 3.9.

(ii) In the range 1 < k < n/4, the desired sequence has one element which is
repeated at least n/2 times.
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